BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 31521274)

  • 1. Dextran as an elicitor of phenylpropanoid and flavonoid biosynthesis in tomato fruit against gray mold infection.
    Lu L; Ji L; Shi R; Li S; Zhang X; Guo Q; Wang C; Qiao L
    Carbohydr Polym; 2019 Dec; 225():115236. PubMed ID: 31521274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chitin isolated from yeast cell wall induces the resistance of tomato fruit to Botrytis cinerea.
    Sun C; Fu D; Jin L; Chen M; Zheng X; Yu T
    Carbohydr Polym; 2018 Nov; 199():341-352. PubMed ID: 30143138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of dioxygenase α-DOX2 and SA in basal response and in hexanoic acid-induced resistance of tomato (Solanum lycopersicum) plants against Botrytis cinerea.
    Angulo C; de la O Leyva M; Finiti I; López-Cruz J; Fernández-Crespo E; García-Agustín P; González-Bosch C
    J Plant Physiol; 2015 Mar; 175():163-73. PubMed ID: 25543862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteomic analysis of ripening tomato fruit infected by Botrytis cinerea.
    Shah P; Powell AL; Orlando R; Bergmann C; Gutierrez-Sanchez G
    J Proteome Res; 2012 Apr; 11(4):2178-92. PubMed ID: 22364583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Absence of the endo-beta-1,4-glucanases Cel1 and Cel2 reduces susceptibility to Botrytis cinerea in tomato.
    Flors V; Leyva Mde L; Vicedo B; Finiti I; Real MD; García-Agustín P; Bennett AB; González-Bosch C
    Plant J; 2007 Dec; 52(6):1027-40. PubMed ID: 17916112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chitosan primes plant defence mechanisms against Botrytis cinerea, including expression of Avr9/Cf-9 rapidly elicited genes.
    De Vega D; Holden N; Hedley PE; Morris J; Luna E; Newton A
    Plant Cell Environ; 2021 Jan; 44(1):290-303. PubMed ID: 33094513
    [TBL] [Abstract][Full Text] [Related]  

  • 7. β-1,3-GLUCANASE10 regulates tomato development and disease resistance by modulating callose deposition.
    Pei Y; Xue Q; Zhang Z; Shu P; Deng H; Bouzayen M; Hong Y; Liu M
    Plant Physiol; 2023 Aug; 192(4):2785-2802. PubMed ID: 37141312
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SlERF2 Is Associated with Methyl Jasmonate-Mediated Defense Response against Botrytis cinerea in Tomato Fruit.
    Yu W; Zhao R; Sheng J; Shen L
    J Agric Food Chem; 2018 Sep; 66(38):9923-9932. PubMed ID: 30192535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional analysis of endo-1,4-β-glucanases in response to Botrytis cinerea and Pseudomonas syringae reveals their involvement in plant-pathogen interactions.
    Finiti I; Leyva MO; López-Cruz J; Calderan Rodrigues B; Vicedo B; Angulo C; Bennett AB; Grant M; García-Agustín P; González-Bosch C
    Plant Biol (Stuttg); 2013 Sep; 15(5):819-31. PubMed ID: 23528138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oligogalacturonide-accelerated healing of mechanical wounding in tomato fruit requires calcium-dependent systemic acquired resistance.
    Lu L; Yang Y; Zhang H; Sun D; Li Z; Guo Q; Wang C; Qiao L
    Food Chem; 2021 Feb; 337():127992. PubMed ID: 32920270
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overexpression of SlMYB75 enhances resistance to Botrytis cinerea and prolongs fruit storage life in tomato.
    Liu M; Zhang Z; Xu Z; Wang L; Chen C; Ren Z
    Plant Cell Rep; 2021 Jan; 40(1):43-58. PubMed ID: 32990799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cryptococcus laurentii controls gray mold of cherry tomato fruit via modulation of ethylene-associated immune responses.
    Tang Q; Zhu F; Cao X; Zheng X; Yu T; Lu L
    Food Chem; 2019 Apr; 278():240-247. PubMed ID: 30583368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SlARG2 contributes to MeJA-induced defense responses to Botrytis cinerea in tomato fruit.
    Min D; Ai W; Zhou J; Li J; Zhang X; Li Z; Shi Z; Li F; Li X; Guo Y
    Pest Manag Sci; 2020 Sep; 76(9):3292-3301. PubMed ID: 32384210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overexpression of the carbohydrate binding module from Solanum lycopersicum expansin 1 (Sl-EXP1) modifies tomato fruit firmness and Botrytis cinerea susceptibility.
    Perini MA; Sin IN; Villarreal NM; Marina M; Powell AL; Martínez GA; Civello PM
    Plant Physiol Biochem; 2017 Apr; 113():122-132. PubMed ID: 28196350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of SlMPK1, SlMPK2, and SlMPK3 Disrupts Defense Signaling Pathways and Enhances Tomato Fruit Susceptibility to Botrytis cinerea.
    Zheng Y; Yang Y; Liu C; Chen L; Sheng J; Shen L
    J Agric Food Chem; 2015 Jun; 63(22):5509-17. PubMed ID: 25910076
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The MADS-box protein SlTAGL1 regulates a ripening-associated SlDQD/SDH2 involved in flavonoid biosynthesis and resistance against Botrytis cinerea in post-harvest tomato fruit.
    Wang R; Liu K; Tang B; Su D; He X; Deng H; Wu M; Bouzayen M; Grierson D; Liu M
    Plant J; 2023 Sep; 115(6):1746-1757. PubMed ID: 37326247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hot Air Treatment Induces Disease Resistance through Activating the Phenylpropanoid Metabolism in Cherry Tomato Fruit.
    Wei Y; Zhou D; Peng J; Pan L; Tu K
    J Agric Food Chem; 2017 Sep; 65(36):8003-8010. PubMed ID: 28813608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silencing of OPR3 in tomato reveals the role of OPDA in callose deposition during the activation of defense responses against Botrytis cinerea.
    Scalschi L; Sanmartín M; Camañes G; Troncho P; Sánchez-Serrano JJ; García-Agustín P; Vicedo B
    Plant J; 2015 Jan; 81(2):304-15. PubMed ID: 25407262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lignin metabolism involves Botrytis cinerea BcGs1- induced defense response in tomato.
    Yang C; Liang Y; Qiu D; Zeng H; Yuan J; Yang X
    BMC Plant Biol; 2018 Jun; 18(1):103. PubMed ID: 29866036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tomato histone H2B monoubiquitination enzymes SlHUB1 and SlHUB2 contribute to disease resistance against Botrytis cinerea through modulating the balance between SA- and JA/ET-mediated signaling pathways.
    Zhang Y; Li D; Zhang H; Hong Y; Huang L; Liu S; Li X; Ouyang Z; Song F
    BMC Plant Biol; 2015 Oct; 15():252. PubMed ID: 26490733
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.