BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 31521274)

  • 21. Absence of Cu-Zn superoxide dismutase BCSOD1 reduces Botrytis cinerea virulence in Arabidopsis and tomato plants, revealing interplay among reactive oxygen species, callose and signalling pathways.
    López-Cruz J; Óscar CS; Emma FC; Pilar GA; Carmen GB
    Mol Plant Pathol; 2017 Jan; 18(1):16-31. PubMed ID: 26780422
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transient autophagy inhibition strengthened postharvest tomato (Solanum lycopersicum) resistance against Botrytis cinerea through curtailing ROS-induced programmed cell death.
    Ma Q; Li D; Ren Y; Chen Y; Huang J; Wu B; Wang Q; Luo Z
    Food Chem; 2024 Oct; 454():139811. PubMed ID: 38820631
    [TBL] [Abstract][Full Text] [Related]  

  • 23. SlMYC2 are required for methyl jasmonate-induced tomato fruit resistance to Botrytis cinerea.
    Min D; Li F; Cui X; Zhou J; Li J; Ai W; Shu P; Zhang X; Li X; Meng D; Guo Y; Li J
    Food Chem; 2020 Apr; 310():125901. PubMed ID: 31816533
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Accumulation of anthocyanins in tomato skin extends shelf life.
    Bassolino L; Zhang Y; Schoonbeek HJ; Kiferle C; Perata P; Martin C
    New Phytol; 2013 Nov; 200(3):650-655. PubMed ID: 24102530
    [TBL] [Abstract][Full Text] [Related]  

  • 25. l-Glutamate treatment enhances disease resistance of tomato fruit by inducing the expression of glutamate receptors and the accumulation of amino acids.
    Sun C; Jin L; Cai Y; Huang Y; Zheng X; Yu T
    Food Chem; 2019 Sep; 293():263-270. PubMed ID: 31151610
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tomato WRKY transcriptional factor SlDRW1 is required for disease resistance against Botrytis cinerea and tolerance to oxidative stress.
    Liu B; Hong YB; Zhang YF; Li XH; Huang L; Zhang HJ; Li DY; Song FM
    Plant Sci; 2014 Oct; 227():145-56. PubMed ID: 25219316
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biological control of Botrytis gray mould on tomato cultivated in greenhouse.
    Fiume F; Fiume G
    Commun Agric Appl Biol Sci; 2006; 71(3 Pt B):897-908. PubMed ID: 17390837
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CRISPR/Cas9-Mediated
    Shu P; Li Z; Min D; Zhang X; Ai W; Li J; Zhou J; Li Z; Li F; Li X
    J Agric Food Chem; 2020 May; 68(20):5529-5538. PubMed ID: 32372640
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Different Reactive Oxygen Species Scavenging Properties of Flavonoids Determine Their Abilities to Extend the Shelf Life of Tomato.
    Zhang Y; De Stefano R; Robine M; Butelli E; Bulling K; Hill L; Rejzek M; Martin C; Schoonbeek HJ
    Plant Physiol; 2015 Nov; 169(3):1568-83. PubMed ID: 26082399
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Induction of systemic resistance in tomato against Botrytis cinerea by N-decanoyl-homoserine lactone via jasmonic acid signaling.
    Hu Z; Shao S; Zheng C; Sun Z; Shi J; Yu J; Qi Z; Shi K
    Planta; 2018 May; 247(5):1217-1227. PubMed ID: 29445868
    [TBL] [Abstract][Full Text] [Related]  

  • 31. LeMAPK1, LeMAPK2, and LeMAPK3 are associated with nitric oxide-induced defense response against Botrytis cinerea in the Lycopersicon esculentum fruit.
    Zheng Y; Hong H; Chen L; Li J; Sheng J; Shen L
    J Agric Food Chem; 2014 Feb; 62(6):1390-6. PubMed ID: 24490996
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Primary Mode of Action of the Novel Sulfonamide Fungicide against
    Yan X; Chen S; Sun W; Zhou X; Yang D; Yuan H; Wang D
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163447
    [No Abstract]   [Full Text] [Related]  

  • 33. Sodium pheophorbide a controls cherry tomato gray mold (Botrytis cinerea) by destroying fungal cell structure and enhancing disease resistance-related enzyme activities in fruit.
    Ji JY; Yang J; Zhang BW; Wang SR; Zhang GC; Lin LN
    Pestic Biochem Physiol; 2020 Jun; 166():104581. PubMed ID: 32448427
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chitosan Controls Postharvest Decay on Cherry Tomato Fruit Possibly via the Mitogen-Activated Protein Kinase Signaling Pathway.
    Zhang D; Wang H; Hu Y; Liu Y
    J Agric Food Chem; 2015 Aug; 63(33):7399-404. PubMed ID: 26223862
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The de novo biosynthesis of vitamin B6 is required for disease resistance against Botrytis cinerea in tomato.
    Zhang Y; Liu B; Li X; Ouyang Z; Huang L; Hong Y; Zhang H; Li D; Song F
    Mol Plant Microbe Interact; 2014 Jul; 27(7):688-99. PubMed ID: 24678833
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Combined Use of
    Li TT; Zhang JD; Tang JQ; Liu ZC; Li YQ; Chen J; Zou LW
    Plant Dis; 2020 May; 104(5):1298-1304. PubMed ID: 32196417
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inhibitory effects and mechanisms of vanillin on gray mold and black rot of cherry tomatoes.
    Yang J; Chen YZ; Yu-Xuan W; Tao L; Zhang YD; Wang SR; Zhang GC; Zhang J
    Pestic Biochem Physiol; 2021 Jun; 175():104859. PubMed ID: 33993955
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Methyl jasmonate induces the resistance of postharvest blueberry to gray mold caused by Botrytis cinerea.
    Wang H; Kou X; Wu C; Fan G; Li T
    J Sci Food Agric; 2020 Aug; 100(11):4272-4281. PubMed ID: 32378217
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of methyl salicylate in combination with 1-methylcyclopropene on postharvest quality and decay caused by Botrytis cinerea in tomato fruit.
    Min D; Li F; Zhang X; Shu P; Cui X; Dong L; Ren C; Meng D; Li J
    J Sci Food Agric; 2018 Aug; 98(10):3815-3822. PubMed ID: 29352462
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hexaconazole Application Saves the Loss of Grey Mold Disease but Hinders Tomato Fruit Ripening in Healthy Plants.
    Deng Y; Liu R; Zheng M; Cai C; Diao J; Zhou Z
    J Agric Food Chem; 2022 Apr; 70(13):3948-3957. PubMed ID: 35324179
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.