These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 31521371)

  • 1. Ideal operating conditions for a variable stiffness transverse plane adapter for individuals with lower-limb amputation.
    Pew C; Segal AD; Neptune RR; Klute GK
    J Biomech; 2019 Nov; 96():109330. PubMed ID: 31521371
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pilot testing of a variable stiffness transverse plane adapter for lower limb amputees.
    Pew C; Klute GK
    Gait Posture; 2017 Jan; 51():104-108. PubMed ID: 27744248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Second generation prototype of a variable stiffness transverse plane adapter for a lower limb prosthesis.
    Pew C; Klute GK
    Med Eng Phys; 2017 Nov; 49():22-27. PubMed ID: 28807513
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of prosthetic foot stiffness on transtibial amputee walking mechanics and balance control during turning.
    Shell CE; Segal AD; Klute GK; Neptune RR
    Clin Biomech (Bristol, Avon); 2017 Nov; 49():56-63. PubMed ID: 28869812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transtibial amputee joint rotation moments during straight-line walking and a common turning task with and without a torsion adapter.
    Segal AD; Orendurff MS; Czerniecki JM; Shofer JB; Klute GK
    J Rehabil Res Dev; 2009; 46(3):375-83. PubMed ID: 19675989
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of the Relative Motion Between the Socket and Residual Limb in Transtibial Amputees While Wearing a Transverse Rotation Adapter.
    Pew CA; Roelker SA; Klute GK; Neptune RR
    J Appl Biomech; 2021 Feb; 37(1):21-29. PubMed ID: 33152690
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional effects of a prosthetic torsion adapter in trans-tibial amputees during unplanned spin and step turns.
    Heitzmann DW; Pieschel K; Alimusaj M; Block J; Putz C; Wolf SI
    Prosthet Orthot Int; 2016 Oct; 40(5):558-65. PubMed ID: 26195621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shock absorption during transtibial amputee gait: Does longitudinal prosthetic stiffness play a role?
    Boutwell E; Stine R; Gard S
    Prosthet Orthot Int; 2017 Apr; 41(2):178-185. PubMed ID: 27117010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Local dynamic stability of amputees wearing a torsion adapter compared to a rigid adapter during straight-line and turning gait.
    Segal AD; Orendurff MS; Czerniecki JM; Shofer JB; Klute GK
    J Biomech; 2010 Oct; 43(14):2798-803. PubMed ID: 20719315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reducing stiffness of shock-absorbing pylon amplifies prosthesis energy loss and redistributes joint mechanical work during walking.
    Maun JA; Gard SA; Major MJ; Takahashi KZ
    J Neuroeng Rehabil; 2021 Sep; 18(1):143. PubMed ID: 34548080
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Does a torsion adapter improve functional mobility, pain, and fatigue in patients with transtibial amputation?
    Segal AD; Kracht R; Klute GK
    Clin Orthop Relat Res; 2014 Oct; 472(10):3085-92. PubMed ID: 24733445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A pilot study comparing prosthetic to sound limb gait mechanics during a turning task in people with transtibial amputation.
    Clemens S; Pew C
    Clin Biomech (Bristol, Avon); 2023 Oct; 109():106077. PubMed ID: 37643570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of transverse prosthetic alignment changes on socket reaction moments during gait in individuals with transtibial amputation.
    Hashimoto H; Kobayashi T; Gao F; Kataoka M; Orendurff MS; Okuda K
    Gait Posture; 2018 Sep; 65():8-14. PubMed ID: 30558951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The biomechanical influence of transtibial Bone-Anchored limbs during walking.
    Vinson AL; Vandenberg NW; Awad ME; Christiansen CL; Stoneback JW; M M Gaffney B
    J Biomech; 2024 May; 168():112098. PubMed ID: 38636112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Whole-body angular momentum during sloped walking using passive and powered lower-limb prostheses.
    Pickle NT; Wilken JM; Aldridge Whitehead JM; Silverman AK
    J Biomech; 2016 Oct; 49(14):3397-3406. PubMed ID: 27670646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanical risk factors for knee osteoarthritis when using passive and powered ankle-foot prostheses.
    Russell Esposito E; Wilken JM
    Clin Biomech (Bristol, Avon); 2014 Dec; 29(10):1186-92. PubMed ID: 25440576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Task dependent changes in mechanical and biomechanical measures result from manipulating stiffness settings in a prosthetic foot.
    Ármannsdóttir AL; Lecomte C; Brynjólfsson S; Briem K
    Clin Biomech (Bristol, Avon); 2021 Oct; 89():105476. PubMed ID: 34517194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensitivity of lower-limb joint mechanics to prosthetic forefoot stiffness with a variable stiffness foot in level-ground walking.
    Nichols KM; Adamczyk PG
    J Biomech; 2023 Jan; 147():111436. PubMed ID: 36701959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Biomimetic Adapter for Passive Self-alignment of Prosthetic Feet.
    Rajula VR; Springgate L; Haque A; Kamrunnahar M; Piazza SJ; Kaluf B
    Mil Med; 2021 Jan; 186(Suppl 1):665-673. PubMed ID: 33499476
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Whole-body angular momentum during stair walking using passive and powered lower-limb prostheses.
    Pickle NT; Wilken JM; Aldridge JM; Neptune RR; Silverman AK
    J Biomech; 2014 Oct; 47(13):3380-9. PubMed ID: 25213178
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.