These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 31521477)
1. Highly sensitive fluorescence imaging of cancer with avidin-protease probe conjugate. Yamamoto K; Kamiya M; Urano Y Bioorg Med Chem Lett; 2019 Oct; 29(20):126663. PubMed ID: 31521477 [TBL] [Abstract][Full Text] [Related]
2. A target cell-specific activatable fluorescence probe for in vivo molecular imaging of cancer based on a self-quenched avidin-rhodamine conjugate. Hama Y; Urano Y; Koyama Y; Kamiya M; Bernardo M; Paik RS; Shin IS; Paik CH; Choyke PL; Kobayashi H Cancer Res; 2007 Mar; 67(6):2791-9. PubMed ID: 17363601 [TBL] [Abstract][Full Text] [Related]
3. A self-quenched galactosamine-serum albumin-rhodamineX conjugate: a "smart" fluorescent molecular imaging probe synthesized with clinically applicable material for detecting peritoneal ovarian cancer metastases. Hama Y; Urano Y; Koyama Y; Gunn AJ; Choyke PL; Kobayashi H Clin Cancer Res; 2007 Nov; 13(21):6335-43. PubMed ID: 17975145 [TBL] [Abstract][Full Text] [Related]
4. In vivo imaging of intraperitoneally disseminated tumors in model mice by using activatable fluorescent small-molecular probes for activity of cathepsins. Fujii T; Kamiya M; Urano Y Bioconjug Chem; 2014 Oct; 25(10):1838-46. PubMed ID: 25196809 [TBL] [Abstract][Full Text] [Related]
5. In vivo spectral fluorescence imaging of submillimeter peritoneal cancer implants using a lectin-targeted optical agent. Hama Y; Urano Y; Koyama Y; Kamiya M; Bernardo M; Paik RS; Krishna MC; Choyke PL; Kobayashi H Neoplasia; 2006 Jul; 8(7):607-12. PubMed ID: 16867223 [TBL] [Abstract][Full Text] [Related]
6. Dynamic fluorescent imaging with the activatable probe, γ-glutamyl hydroxymethyl rhodamine green in the detection of peritoneal cancer metastases: Overcoming the problem of dilution when using a sprayable optical probe. Nakamura Y; Harada T; Nagaya T; Sato K; Okuyama S; Choyke PL; Kobayashi H Oncotarget; 2016 Aug; 7(32):51124-51137. PubMed ID: 27286461 [TBL] [Abstract][Full Text] [Related]
7. Rational design of highly sensitive fluorescence probes for protease and glycosidase based on precisely controlled spirocyclization. Sakabe M; Asanuma D; Kamiya M; Iwatate RJ; Hanaoka K; Terai T; Nagano T; Urano Y J Am Chem Soc; 2013 Jan; 135(1):409-14. PubMed ID: 23205758 [TBL] [Abstract][Full Text] [Related]
8. Targeted optical imaging of cancer cells using lectin-binding BODIPY conjugated avidin. Hama Y; Urano Y; Koyama Y; Choyke PL; Kobayashi H Biochem Biophys Res Commun; 2006 Sep; 348(3):807-13. PubMed ID: 16904640 [TBL] [Abstract][Full Text] [Related]
9. H-type dimer formation of fluorophores: a mechanism for activatable, in vivo optical molecular imaging. Ogawa M; Kosaka N; Choyke PL; Kobayashi H ACS Chem Biol; 2009 Jul; 4(7):535-46. PubMed ID: 19480464 [TBL] [Abstract][Full Text] [Related]
10. Fluorophore-quencher based activatable targeted optical probes for detecting in vivo cancer metastases. Ogawa M; Kosaka N; Longmire MR; Urano Y; Choyke PL; Kobayashi H Mol Pharm; 2009; 6(2):386-95. PubMed ID: 19718793 [TBL] [Abstract][Full Text] [Related]
11. Galactosyl human serum albumin-NMP1 conjugate: a near infrared (NIR)-activatable fluorescence imaging agent to detect peritoneal ovarian cancer metastases. Alexander VM; Sano K; Yu Z; Nakajima T; Choyke PL; Ptaszek M; Kobayashi H Bioconjug Chem; 2012 Aug; 23(8):1671-9. PubMed ID: 22799539 [TBL] [Abstract][Full Text] [Related]
12. Red fluorescent scaffold for highly sensitive protease activity probes. Kushida Y; Hanaoka K; Komatsu T; Terai T; Ueno T; Yoshida K; Uchiyama M; Nagano T Bioorg Med Chem Lett; 2012 Jun; 22(12):3908-11. PubMed ID: 22607681 [TBL] [Abstract][Full Text] [Related]
13. Near-Infrared Fluorescent Probe with Remarkable Large Stokes Shift and Favorable Water Solubility for Real-Time Tracking Leucine Aminopeptidase in Living Cells and In Vivo. Zhang W; Liu F; Zhang C; Luo JG; Luo J; Yu W; Kong L Anal Chem; 2017 Nov; 89(22):12319-12326. PubMed ID: 29048879 [TBL] [Abstract][Full Text] [Related]
14. Development of an Activatable Fluorescent Probe for Prostate Cancer Imaging. Yogo T; Umezawa K; Kamiya M; Hino R; Urano Y Bioconjug Chem; 2017 Aug; 28(8):2069-2076. PubMed ID: 28691803 [TBL] [Abstract][Full Text] [Related]
15. High sensitivity detection of cancer in vivo using a dual-controlled activation fluorescent imaging probe based on H-dimer formation and pH activation. Ogawa M; Kosaka N; Regino CA; Mitsunaga M; Choyke PL; Kobayashi H Mol Biosyst; 2010 May; 6(5):888-93. PubMed ID: 20567775 [TBL] [Abstract][Full Text] [Related]
16. A comparison of the emission efficiency of four common green fluorescence dyes after internalization into cancer cells. Hama Y; Urano Y; Koyama Y; Bernardo M; Choyke PL; Kobayashi H Bioconjug Chem; 2006; 17(6):1426-31. PubMed ID: 17105220 [TBL] [Abstract][Full Text] [Related]
17. Detection of early adenocarcinoma of the esophagogastric junction by spraying an enzyme-activatable fluorescent probe targeting Dipeptidyl peptidase-IV. Yamamoto K; Ohnishi S; Mizushima T; Kodaira J; Ono M; Hatanaka Y; Hatanaka KC; Kuriki Y; Kamiya M; Ehira N; Shinada K; Takahashi H; Shimizu Y; Urano Y; Sakamoto N BMC Cancer; 2020 Jan; 20(1):64. PubMed ID: 31992267 [TBL] [Abstract][Full Text] [Related]
18. Asymmetric Rhodamine-Based Fluorescent Probe for Multicolour In Vivo Imaging. Iwatate RJ; Kamiya M; Urano Y Chemistry; 2016 Jan; 22(5):1696-703. PubMed ID: 26744125 [TBL] [Abstract][Full Text] [Related]
19. Surgical tissue handling methods to optimize ex vivo fluorescence with the activatable optical probe γ-glutamyl hydroxymethyl rhodamine green. Harada T; Nakamura Y; Sato K; Nagaya T; Choyke PL; Seto Y; Kobayashi H Contrast Media Mol Imaging; 2016 Nov; 11(6):572-578. PubMed ID: 27444370 [TBL] [Abstract][Full Text] [Related]