BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 31521622)

  • 21. Inverse screening of Simvastatin kinase targets from glioblastoma druggable kinome.
    Li Y; Wei X; Wang Q; Li W; Yang T
    Comput Biol Chem; 2020 Jun; 86():107243. PubMed ID: 32172201
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Kinase-kernel models: accurate in silico screening of 4 million compounds across the entire human kinome.
    Martin E; Mukherjee P
    J Chem Inf Model; 2012 Jan; 52(1):156-70. PubMed ID: 22133092
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of Ligand-based Big Data Deep Neural Network Models for Virtual Screening of Large Compound Libraries.
    Xiao T; Qi X; Chen Y; Jiang Y
    Mol Inform; 2018 Nov; 37(11):e1800031. PubMed ID: 29882343
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Scalable prediction of compound-protein interactions using minwise hashing.
    Tabei Y; Yamanishi Y
    BMC Syst Biol; 2013; 7 Suppl 6(Suppl 6):S3. PubMed ID: 24564870
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Panel docking of small-molecule libraries - Prospects to improve efficiency of lead compound discovery.
    Sarnpitak P; Mujumdar P; Taylor P; Cross M; Coster MJ; Gorse AD; Krasavin M; Hofmann A
    Biotechnol Adv; 2015 Nov; 33(6 Pt 1):941-7. PubMed ID: 26025037
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Assessing protein kinase target similarity: Comparing sequence, structure, and cheminformatics approaches.
    Gani OA; Thakkar B; Narayanan D; Alam KA; Kyomuhendo P; Rothweiler U; Tello-Franco V; Engh RA
    Biochim Biophys Acta; 2015 Oct; 1854(10 Pt B):1605-16. PubMed ID: 26001898
    [TBL] [Abstract][Full Text] [Related]  

  • 27. SDTNBI: an integrated network and chemoinformatics tool for systematic prediction of drug-target interactions and drug repositioning.
    Wu Z; Cheng F; Li J; Li W; Liu G; Tang Y
    Brief Bioinform; 2017 Mar; 18(2):333-347. PubMed ID: 26944082
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of small-molecule EGFR allosteric inhibitors by high-throughput docking.
    Caporuscio F; Tinivella A; Restelli V; Semrau MS; Pinzi L; Storici P; Broggini M; Rastelli G
    Future Med Chem; 2018 Jul; 10(13):1545-1553. PubMed ID: 29766737
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cross-reactivity virtual profiling of the human kinome by X-react(KIN): a chemical systems biology approach.
    Brylinski M; Skolnick J
    Mol Pharm; 2010 Dec; 7(6):2324-33. PubMed ID: 20958088
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Applications of chemogenomic library screening in drug discovery.
    Jones LH; Bunnage ME
    Nat Rev Drug Discov; 2017 Apr; 16(4):285-296. PubMed ID: 28104905
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Conformational analysis of the DFG-out kinase motif and biochemical profiling of structurally validated type II inhibitors.
    Vijayan RS; He P; Modi V; Duong-Ly KC; Ma H; Peterson JR; Dunbrack RL; Levy RM
    J Med Chem; 2015 Jan; 58(1):466-79. PubMed ID: 25478866
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Open-source chemogenomic data-driven algorithms for predicting drug-target interactions.
    Hao M; Bryant SH; Wang Y
    Brief Bioinform; 2019 Jul; 20(4):1465-1474. PubMed ID: 29420684
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification and Pharmacological Analysis of High Efficacy Small Molecule Inhibitors of EGF-EGFR Interactions in Clinical Treatment of Non-Small Cell Lung Carcinoma: a Computational Approach.
    Gudala S; Khan U; Kanungo N; Bandaru S; Hussain T; Parihar M; Nayarisseri A; Mundluru HP
    Asian Pac J Cancer Prev; 2015; 16(18):8191-6. PubMed ID: 26745059
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Novel kinase inhibitors by reshuffling ligand functionalities across the human kinome.
    Vidović D; Muskal SM; Schürer SC
    J Chem Inf Model; 2012 Dec; 52(12):3107-15. PubMed ID: 23121521
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of novel PI3Kδ inhibitors by docking, ADMET prediction and molecular dynamics simulations.
    Liu YY; Feng XY; Jia WQ; Jing Z; Xu WR; Cheng XC
    Comput Biol Chem; 2019 Feb; 78():190-204. PubMed ID: 30557817
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Computational prediction of drug-target interactions using chemogenomic approaches: an empirical survey.
    Ezzat A; Wu M; Li XL; Kwoh CK
    Brief Bioinform; 2019 Jul; 20(4):1337-1357. PubMed ID: 29377981
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Early repositioning through compound set enrichment analysis: a knowledge-recycling strategy.
    Temesi G; Bolgár B; Arany A; Szalai C; Antal P; Mátyus P
    Future Med Chem; 2014 Apr; 6(5):563-75. PubMed ID: 24649958
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantitative Structure-Activity Relationship Modeling of Kinase Selectivity Profiles.
    Kothiwale S; Borza C; Pozzi A; Meiler J
    Molecules; 2017 Sep; 22(9):. PubMed ID: 28925954
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Using machine learning to improve ensemble docking for drug discovery.
    Chandak T; Mayginnes JP; Mayes H; Wong CF
    Proteins; 2020 Oct; 88(10):1263-1270. PubMed ID: 32401384
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A survey of the kinome pharmacopeia reveals multiple scaffolds and targets for the development of novel anthelmintics.
    Knox J; Joly N; Linossi EM; Carmona-Negrón JA; Jura N; Pintard L; Zuercher W; Roy PJ
    Sci Rep; 2021 Apr; 11(1):9161. PubMed ID: 33911106
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.