These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 31521815)

  • 1. Arsenic removal from flooded paddy soil with spontaneous hygrophyte markedly attenuates rice grain arsenic.
    Wang X; Huang R; Li L; He S; Yan L; Wang H; Wu X; Yin Y; Xing B
    Environ Int; 2019 Dec; 133(Pt A):105159. PubMed ID: 31521815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced arsenic depletion by rice plant from flooded paddy soil with soluble organic fertilizer application.
    He S; Wang X; Zheng C; Yan L; Li L; Huang R; Wang H
    Chemosphere; 2020 Aug; 252():126521. PubMed ID: 32203780
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of arsenic mobilization in paddy soils by manganese and iron oxides.
    Xu X; Chen C; Wang P; Kretzschmar R; Zhao FJ
    Environ Pollut; 2017 Dec; 231(Pt 1):37-47. PubMed ID: 28783611
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of labile arsenic from flooded paddy soils with a novel extractive column loaded with quartz-supported nanoscale zero-valent iron.
    Huang R; Wang X; Xing B
    Environ Pollut; 2019 Dec; 255(Pt 1):113249. PubMed ID: 31542664
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using rice as a remediating plant to deplete bioavailable arsenic from paddy soils.
    He S; Wang X; Wu X; Yin Y; Ma LQ
    Environ Int; 2020 Aug; 141():105799. PubMed ID: 32470755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biochar and ash derived from silicon-rich rice husk decrease inorganic arsenic species in rice grain.
    Leksungnoen P; Wisawapipat W; Ketrot D; Aramrak S; Nookabkaew S; Rangkadilok N; Satayavivad J
    Sci Total Environ; 2019 Sep; 684():360-370. PubMed ID: 31153082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitrate reduced arsenic redox transformation and transfer in flooded paddy soil-rice system.
    Lin Z; Wang X; Wu X; Liu D; Yin Y; Zhang Y; Xiao S; Xing B
    Environ Pollut; 2018 Dec; 243(Pt B):1015-1025. PubMed ID: 30248601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accumulation, translocation and conversion of six arsenic species in rice plants grown near a mine impacted city.
    Ma L; Wang L; Jia Y; Yang Z
    Chemosphere; 2017 Sep; 183():44-52. PubMed ID: 28531558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arsenic extraction from seriously contaminated paddy soils with ferrihydrite-loaded sand columns.
    Zhang R; Huang B; Zeng H; Wang X; Peng B; Yu H; Guo W
    Chemosphere; 2022 Nov; 307(Pt 1):135744. PubMed ID: 35853516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growing rice aerobically markedly decreases arsenic accumulation.
    Xu XY; McGrath SP; Meharg AA; Zhao FJ
    Environ Sci Technol; 2008 Aug; 42(15):5574-9. PubMed ID: 18754478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined impacts of Si-rich rice residues and flooding extent on grain As and Cd in rice.
    Seyfferth AL; Amaral D; Limmer MA; Guilherme LRG
    Environ Int; 2019 Jul; 128():301-309. PubMed ID: 31077999
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved grain yield and lowered arsenic accumulation in rice plants by inoculation with arsenite-oxidizing Achromobacter xylosoxidans GD03.
    Wang K; Li Y; Wu Y; Qiu Z; Ding Z; Wang X; Chen W; Wang R; Fu F; Rensing C; Yang G
    Ecotoxicol Environ Saf; 2020 Dec; 206():111229. PubMed ID: 32889310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water management impacts the soil microbial communities and total arsenic and methylated arsenicals in rice grains.
    Wang M; Tang Z; Chen XP; Wang X; Zhou WX; Tang Z; Zhang J; Zhao FJ
    Environ Pollut; 2019 Apr; 247():736-744. PubMed ID: 30721864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arsenic availability in rice from a mining area: is amorphous iron oxide-bound arsenic a source or sink?
    Liu C; Yu HY; Liu C; Li F; Xu X; Wang Q
    Environ Pollut; 2015 Apr; 199():95-101. PubMed ID: 25638690
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbial sulfate reduction decreases arsenic mobilization in flooded paddy soils with high potential for microbial Fe reduction.
    Xu X; Wang P; Zhang J; Chen C; Wang Z; Kopittke PM; Kretzschmar R; Zhao FJ
    Environ Pollut; 2019 Aug; 251():952-960. PubMed ID: 31234262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of ferrous sulfate amendment and water management on rice growth and metal(loid) accumulation in arsenic and lead co-contaminated soil.
    Zou L; Zhang S; Duan D; Liang X; Shi J; Xu J; Tang X
    Environ Sci Pollut Res Int; 2018 Mar; 25(9):8888-8902. PubMed ID: 29330821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of agronomic practices on arsenic accumulation and speciation in rice grain.
    Ma R; Shen J; Wu J; Tang Z; Shen Q; Zhao FJ
    Environ Pollut; 2014 Nov; 194():217-223. PubMed ID: 25150455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The availabilities of arsenic and cadmium in rice paddy fields from a mining area: The role of soil extractable and plant silicon.
    Yu HY; Ding X; Li F; Wang X; Zhang S; Yi J; Liu C; Xu X; Wang Q
    Environ Pollut; 2016 Aug; 215():258-265. PubMed ID: 27209244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Small-scale interaction of iron and phosphorus in flooded soils with rice growth.
    Wang Y; Yuan JH; Chen H; Zhao X; Wang D; Wang SQ; Ding SM
    Sci Total Environ; 2019 Jun; 669():911-919. PubMed ID: 30970458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arsenic uptake and accumulation in rice (Oryza sativa L.) with selenite fertilization and water management.
    Wan Y; Camara AY; Huang Q; Yu Y; Wang Q; Li H
    Ecotoxicol Environ Saf; 2018 Jul; 156():67-74. PubMed ID: 29529515
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.