BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

529 related articles for article (PubMed ID: 31521825)

  • 1. Automated anatomical labelling atlas 3.
    Rolls ET; Huang CC; Lin CP; Feng J; Joliot M
    Neuroimage; 2020 Feb; 206():116189. PubMed ID: 31521825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Implementation of a new parcellation of the orbitofrontal cortex in the automated anatomical labeling atlas.
    Rolls ET; Joliot M; Tzourio-Mazoyer N
    Neuroimage; 2015 Nov; 122():1-5. PubMed ID: 26241684
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An extended Human Connectome Project multimodal parcellation atlas of the human cortex and subcortical areas.
    Huang CC; Rolls ET; Feng J; Lin CP
    Brain Struct Funct; 2022 Apr; 227(3):763-778. PubMed ID: 34791508
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Excitatory amino acid projections to the nucleus accumbens septi in the rat: a retrograde transport study utilizing D[3H]aspartate and [3H]GABA.
    Christie MJ; Summers RJ; Stephenson JA; Cook CJ; Beart PM
    Neuroscience; 1987 Aug; 22(2):425-39. PubMed ID: 2823173
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of three brain atlases for MCI prediction.
    Ota K; Oishi N; Ito K; Fukuyama H;
    J Neurosci Methods; 2014 Jan; 221():139-50. PubMed ID: 24140118
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional Connectivity of the Anterior Cingulate Cortex in Depression and in Health.
    Rolls ET; Cheng W; Gong W; Qiu J; Zhou C; Zhang J; Lv W; Ruan H; Wei D; Cheng K; Meng J; Xie P; Feng J
    Cereb Cortex; 2019 Jul; 29(8):3617-3630. PubMed ID: 30418547
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Subcortical Atlas of the Rhesus Macaque (SARM) for neuroimaging.
    Hartig R; Glen D; Jung B; Logothetis NK; Paxinos G; Garza-Villarreal EA; Messinger A; Evrard HC
    Neuroimage; 2021 Jul; 235():117996. PubMed ID: 33794360
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The central adrenergic system. An immunofluorescence study of the location of cell bodies and their efferent connections in the rat utilizing dopamine-beta-hydroxylase as a marker.
    Swanson LW; Hartman BK
    J Comp Neurol; 1975 Oct; 163(4):467-505. PubMed ID: 1100685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A multi-atlas based method for automated anatomical Macaca fascicularis brain MRI segmentation and PET kinetic extraction.
    Ballanger B; Tremblay L; Sgambato-Faure V; Beaudoin-Gobert M; Lavenne F; Le Bars D; Costes N
    Neuroimage; 2013 Aug; 77():26-43. PubMed ID: 23537938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Forebrain projections from cholecystokininlike-immunoreactive neurons in the rat midbrain.
    Seroogy KB; Fallon JH
    J Comp Neurol; 1989 Jan; 279(3):415-35. PubMed ID: 2918078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Afferents to the median raphe nucleus of the rat: retrograde cholera toxin and wheat germ conjugated horseradish peroxidase tracing, and selective D-[3H]aspartate labelling of possible excitatory amino acid inputs.
    Behzadi G; Kalén P; Parvopassu F; Wiklund L
    Neuroscience; 1990; 37(1):77-100. PubMed ID: 2243599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain.
    Tzourio-Mazoyer N; Landeau B; Papathanassiou D; Crivello F; Etard O; Delcroix N; Mazoyer B; Joliot M
    Neuroimage; 2002 Jan; 15(1):273-89. PubMed ID: 11771995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fetal cortical surface atlas parcellation based on growth patterns.
    Xia J; Wang F; Benkarim OM; Sanroma G; Piella G; González Ballester MA; Hahner N; Eixarch E; Zhang C; Shen D; Li G
    Hum Brain Mapp; 2019 Sep; 40(13):3881-3899. PubMed ID: 31106942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atlas pre-selection strategies to enhance the efficiency and accuracy of multi-atlas brain segmentation tools.
    Ye C; Ma T; Wu D; Ceritoglu C; Miller MI; Mori S
    PLoS One; 2018; 13(7):e0200294. PubMed ID: 30052643
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Baby brain atlases.
    Oishi K; Chang L; Huang H
    Neuroimage; 2019 Jan; 185():865-880. PubMed ID: 29625234
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A human brain atlas derived via n-cut parcellation of resting-state and task-based fMRI data.
    James GA; Hazaroglu O; Bush KA
    Magn Reson Imaging; 2016 Feb; 34(2):209-18. PubMed ID: 26523655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantifying inter-individual anatomical variability in the subcortex using 7 T structural MRI.
    Keuken MC; Bazin PL; Crown L; Hootsmans J; Laufer A; Müller-Axt C; Sier R; van der Putten EJ; Schäfer A; Turner R; Forstmann BU
    Neuroimage; 2014 Jul; 94():40-46. PubMed ID: 24650599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toward defining deep brain stimulation targets in MNI space: A subcortical atlas based on multimodal MRI, histology and structural connectivity.
    Ewert S; Plettig P; Li N; Chakravarty MM; Collins DL; Herrington TM; Kühn AA; Horn A
    Neuroimage; 2018 Apr; 170():271-282. PubMed ID: 28536045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Usefulness of brain atlases in neuroradiology: Current status and future potential.
    Nowinski WL
    Neuroradiol J; 2016 Aug; 29(4):260-8. PubMed ID: 27154190
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Supervoxel based method for multi-atlas segmentation of brain MR images.
    Huo J; Wu J; Cao J; Wang G
    Neuroimage; 2018 Jul; 175():201-214. PubMed ID: 29625235
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.