These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. Detection of Hemodynamically Significant Coronary Stenosis: CT Myocardial Perfusion versus Machine Learning CT Fractional Flow Reserve. Li Y; Yu M; Dai X; Lu Z; Shen C; Wang Y; Lu B; Zhang J Radiology; 2019 Nov; 293(2):305-314. PubMed ID: 31549943 [TBL] [Abstract][Full Text] [Related]
9. Influence of Coronary Calcium on Diagnostic Performance of Machine Learning CT-FFR: Results From MACHINE Registry. Tesche C; Otani K; De Cecco CN; Coenen A; De Geer J; Kruk M; Kim YH; Albrecht MH; Baumann S; Renker M; Bayer RR; Duguay TM; Litwin SE; Varga-Szemes A; Steinberg DH; Yang DH; Kepka C; Persson A; Nieman K; Schoepf UJ JACC Cardiovasc Imaging; 2020 Mar; 13(3):760-770. PubMed ID: 31422141 [TBL] [Abstract][Full Text] [Related]
10. Comparison of machine learning-based CT fractional flow reserve with cardiac MR perfusion mapping for ischemia diagnosis in stable coronary artery disease. Guo W; Zhao S; Xu H; He W; Yin L; Yao Z; Xu Z; Jin H; Wu D; Li C; Yang S; Zeng M Eur Radiol; 2024 Sep; 34(9):5654-5665. PubMed ID: 38409549 [TBL] [Abstract][Full Text] [Related]
11. Diagnostic performance of fractional flow reserve derived from coronary CT angiography for detection of lesion-specific ischemia: A multi-center study and meta-analysis. Tang CX; Wang YN; Zhou F; Schoepf UJ; Assen MV; Stroud RE; Li JH; Zhang XL; Lu MJ; Zhou CS; Zhang DM; Yi Y; Yan J; Lu GM; Xu L; Zhang LJ Eur J Radiol; 2019 Jul; 116():90-97. PubMed ID: 31153580 [TBL] [Abstract][Full Text] [Related]
12. Computed tomography angiography-derived fractional flow reserve (CT-FFR) for the detection of myocardial ischemia with invasive fractional flow reserve as reference: systematic review and meta-analysis. Zhuang B; Wang S; Zhao S; Lu M Eur Radiol; 2020 Feb; 30(2):712-725. PubMed ID: 31696294 [TBL] [Abstract][Full Text] [Related]
13. Noninvasive diagnosis of ischemia-causing coronary stenosis using CT angiography: diagnostic value of transluminal attenuation gradient and fractional flow reserve computed from coronary CT angiography compared to invasively measured fractional flow reserve. Yoon YE; Choi JH; Kim JH; Park KW; Doh JH; Kim YJ; Koo BK; Min JK; Erglis A; Gwon HC; Choe YH; Choi DJ; Kim HS; Oh BH; Park YB JACC Cardiovasc Imaging; 2012 Nov; 5(11):1088-96. PubMed ID: 23153908 [TBL] [Abstract][Full Text] [Related]
14. Diagnostic performance of on-site computed CT-fractional flow reserve based on fluid structure interactions: comparison with invasive fractional flow reserve and instantaneous wave-free ratio. Fujimoto S; Kawasaki T; Kumamaru KK; Kawaguchi Y; Dohi T; Okonogi T; Ri K; Yamada S; Takamura K; Kato E; Kato Y; Hiki M; Okazaki S; Aoki S; Mitsouras D; Rybicki FJ; Daida H Eur Heart J Cardiovasc Imaging; 2019 Mar; 20(3):343-352. PubMed ID: 30107511 [TBL] [Abstract][Full Text] [Related]
15. Diagnostic performance of transluminal attenuation gradient and fractional flow reserve by coronary computed tomographic angiography (FFR(CT)) compared to invasive FFR: a sub-group analysis from the DISCOVER-FLOW and DeFACTO studies. Nakanishi R; Matsumoto S; Alani A; Li D; Kitslaar PH; Broersen A; Koo BK; Min JK; Budoff MJ Int J Cardiovasc Imaging; 2015 Aug; 31(6):1251-9. PubMed ID: 25904402 [TBL] [Abstract][Full Text] [Related]
16. Machine Learning From Quantitative Coronary Computed Tomography Angiography Predicts Fractional Flow Reserve-Defined Ischemia and Impaired Myocardial Blood Flow. Lin A; van Diemen PA; Motwani M; McElhinney P; Otaki Y; Han D; Kwan A; Tzolos E; Klein E; Kuronuma K; Grodecki K; Shou B; Rios R; Manral N; Cadet S; Danad I; Driessen RS; Berman DS; Nørgaard BL; Slomka PJ; Knaapen P; Dey D Circ Cardiovasc Imaging; 2022 Oct; 15(10):e014369. PubMed ID: 36252116 [TBL] [Abstract][Full Text] [Related]
17. Diagnostic performance of machine-learning-based computed fractional flow reserve (FFR) derived from coronary computed tomography angiography for the assessment of myocardial ischemia verified by invasive FFR. Hu X; Yang M; Han L; Du Y Int J Cardiovasc Imaging; 2018 Dec; 34(12):1987-1996. PubMed ID: 30062537 [TBL] [Abstract][Full Text] [Related]
18. CT Angiography for the Prediction of Hemodynamic Significance in Intermediate and Severe Lesions: Head-to-Head Comparison With Quantitative Coronary Angiography Using Fractional Flow Reserve as the Reference Standard. Budoff MJ; Nakazato R; Mancini GB; Gransar H; Leipsic J; Berman DS; Min JK JACC Cardiovasc Imaging; 2016 May; 9(5):559-64. PubMed ID: 26897669 [TBL] [Abstract][Full Text] [Related]
19. Diagnostic Accuracy of a Machine-Learning Approach to Coronary Computed Tomographic Angiography-Based Fractional Flow Reserve: Result From the MACHINE Consortium. Coenen A; Kim YH; Kruk M; Tesche C; De Geer J; Kurata A; Lubbers ML; Daemen J; Itu L; Rapaka S; Sharma P; Schwemmer C; Persson A; Schoepf UJ; Kepka C; Hyun Yang D; Nieman K Circ Cardiovasc Imaging; 2018 Jun; 11(6):e007217. PubMed ID: 29914866 [TBL] [Abstract][Full Text] [Related]
20. Diagnostic performance of on-site CT-derived fractional flow reserve versus CT perfusion. Yang DH; Kim YH; Roh JH; Kang JW; Ahn JM; Kweon J; Lee JB; Choi SH; Shin ES; Park DW; Kang SJ; Lee SW; Lee CW; Park SW; Park SJ; Lim TH Eur Heart J Cardiovasc Imaging; 2017 Apr; 18(4):432-440. PubMed ID: 27354345 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]