BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 31521971)

  • 21. Highly dispersed ultrasmall NiS
    Zhao W; Ci S; Hu X; Chen J; Wen Z
    Nanoscale; 2019 Mar; 11(11):4688-4695. PubMed ID: 30820499
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Agaric-like anodes of porous carbon decorated with MoO
    Hou C; Yang W; Xie X; Sun X; Wang J; Naik N; Pan D; Mai X; Guo Z; Dang F; Du W
    J Colloid Interface Sci; 2021 Aug; 596():396-407. PubMed ID: 33848745
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Encapsulating Sn(x)Sb Nanoparticles in Multichannel Graphene-Carbon Fibers As Flexible Anodes to Store Lithium Ions with High Capacities.
    Tang X; Yan F; Wei Y; Zhang M; Wang T; Zhang T
    ACS Appl Mater Interfaces; 2015 Oct; 7(39):21890-7. PubMed ID: 26371535
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Carbon-Confined SnO2-Electrodeposited Porous Carbon Nanofiber Composite as High-Capacity Sodium-Ion Battery Anode Material.
    Dirican M; Lu Y; Ge Y; Yildiz O; Zhang X
    ACS Appl Mater Interfaces; 2015 Aug; 7(33):18387-96. PubMed ID: 26252051
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Achieving Fast and Durable Lithium Storage through Amorphous FeP Nanoparticles Encapsulated in Ultrathin 3D P-Doped Porous Carbon Nanosheets.
    Zheng Z; Wu HH; Liu H; Zhang Q; He X; Yu S; Petrova V; Feng J; Kostecki R; Liu P; Peng DL; Liu M; Wang MS
    ACS Nano; 2020 Aug; 14(8):9545-9561. PubMed ID: 32658458
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Three-dimensional mesoporous γ-Fe
    Su Y; Fu B; Yuan G; Ma M; Jin H; Xie S; Li J
    Nanotechnology; 2020 Apr; 31(15):155401. PubMed ID: 31855853
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Silver Nanoparticle-Doped 3D Porous Carbon Nanofibers as Separator Coating for Stable Lithium Metal Anodes.
    Liu M; Deng N; Ju J; Wang L; Wang G; Ma Y; Kang W; Yan J
    ACS Appl Mater Interfaces; 2019 May; 11(19):17843-17852. PubMed ID: 31017756
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Confined Porous Graphene/SnOx Frameworks within Polyaniline-Derived Carbon as Highly Stable Lithium-Ion Battery Anodes.
    Zhou D; Song WL; Li X; Fan LZ
    ACS Appl Mater Interfaces; 2016 Jun; 8(21):13410-7. PubMed ID: 27169479
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ultrafine Mo2C nanoparticles encapsulated in N-doped carbon nanofibers with enhanced lithium storage performance.
    Li R; Wang S; Wang W; Cao M
    Phys Chem Chem Phys; 2015 Oct; 17(38):24803-9. PubMed ID: 26344047
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Well-ordered mesoporous Fe
    Li M; Ma C; Zhu QC; Xu SM; Wei X; Wu YM; Tang WP; Wang KX; Chen JS
    Dalton Trans; 2017 Apr; 46(15):5025-5032. PubMed ID: 28350408
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Three-dimensional SnO2/carbon on Cu foam for high-performance lithium ion battery anodes.
    Chen W; Maloney S; Wang W
    Nanotechnology; 2016 Oct; 27(41):415401. PubMed ID: 27587237
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hollow/porous nanostructures derived from nanoscale metal-organic frameworks towards high performance anodes for lithium-ion batteries.
    Hu L; Chen Q
    Nanoscale; 2014; 6(3):1236-57. PubMed ID: 24356788
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A multidimensional and hierarchical carbon-confined cobalt phosphide nanocomposite as an advanced anode for lithium and sodium storage.
    Wang B; Chen K; Wang G; Liu X; Wang H; Bai J
    Nanoscale; 2019 Jan; 11(3):968-985. PubMed ID: 30569925
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthesis of SnO2 versus Sn crystals within N-doped porous carbon nanofibers via electrospinning towards high-performance lithium ion batteries.
    Wang H; Lu X; Li L; Li B; Cao D; Wu Q; Li Z; Yang G; Guo B; Niu C
    Nanoscale; 2016 Apr; 8(14):7595-603. PubMed ID: 26984273
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cl
    Yang Q; Wu X; Huang X; Liao S; Liang K; Yu X; Li K; Zhi C; Zhang H; Li N
    ACS Appl Mater Interfaces; 2019 Aug; 11(34):30801-30809. PubMed ID: 31368689
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nanocarbon networks for advanced rechargeable lithium batteries.
    Xin S; Guo YG; Wan LJ
    Acc Chem Res; 2012 Oct; 45(10):1759-69. PubMed ID: 22953777
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Low volume expansion hierarchical porous sulfur-doped Fe
    Chen J; Zhu K; Rao Y; Liang P; Zhang J; Zheng H; Shi F; Yan K; Wang J; Liu J
    Dalton Trans; 2023 Feb; 52(7):1919-1926. PubMed ID: 36722790
    [TBL] [Abstract][Full Text] [Related]  

  • 38. MOF-derived ultrafine MnO nanocrystals embedded in a porous carbon matrix as high-performance anodes for lithium-ion batteries.
    Zheng F; Xia G; Yang Y; Chen Q
    Nanoscale; 2015 Jun; 7(21):9637-45. PubMed ID: 25955439
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Architectural Engineering Achieves High-Performance Alloying Anodes for Lithium and Sodium Ion Batteries.
    Guo S; Feng Y; Wang L; Jiang Y; Yu Y; Hu X
    Small; 2021 May; 17(19):e2005248. PubMed ID: 33734598
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Highly porous structure strategy to improve the SnO2 electrode performance for lithium-ion batteries.
    Yang T; Lu B
    Phys Chem Chem Phys; 2014 Mar; 16(9):4115-21. PubMed ID: 24448608
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.