BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 31522304)

  • 1. Response mechanism of hypocrellin colorants biosynthesis by Shiraia bambusicola to elicitor PB90.
    Du W; Sun C; Wang B; Wang Y; Dong B; Liu J; Xia J; Xie W; Wang J; Sun J; Liu X; Wang H
    AMB Express; 2019 Sep; 9(1):146. PubMed ID: 31522304
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Global identification of alternative splicing in Shiraia bambusicola and analysis of its regulation in hypocrellin biosynthesis.
    Liu XY; Fan L; Gao J; Shen XY; Hou CL
    Appl Microbiol Biotechnol; 2020 Jan; 104(1):211-223. PubMed ID: 31768612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive Responses to Oxidative Stress in the Filamentous Fungal Shiraia bambusicola.
    Deng H; Chen J; Gao R; Liao X; Cai Y
    Molecules; 2016 Aug; 21(9):. PubMed ID: 27563871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolomics integrated with transcriptomics reveals the changes during developmental stages in Shiraia bambusicola.
    Ren X; Tian B; Wang L; Tan Y; Huang Y; Jiang X; Liu Y
    J Basic Microbiol; 2022 Jun; 62(6):721-739. PubMed ID: 35289436
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitric oxide mediates hypocrellin accumulation induced by fungal elicitor in submerged cultures of Shiraia bambusicola.
    Du W; Liang J; Han Y; Yu J; Liang Z
    Biotechnol Lett; 2015 Jan; 37(1):153-9. PubMed ID: 25214226
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of 5-Azacytidine on Growth and Hypocrellin Production of
    Ma YJ; Lu CS; Wang JW
    Front Microbiol; 2018; 9():2508. PubMed ID: 30405568
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitric oxide regulates perylenequinones biosynthesis in Shiraia bambusicola S4201 induced by hydrogen peroxide.
    Zhao N; Yu Y; Yue Y; Dou M; Guo B; Yan S; Chen S
    Sci Rep; 2021 Jan; 11(1):2365. PubMed ID: 33504905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome editing in Shiraia bambusicola using CRISPR-Cas9 system.
    Deng H; Gao R; Liao X; Cai Y
    J Biotechnol; 2017 Oct; 259():228-234. PubMed ID: 28690135
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of a major facilitator superfamily transporter in Shiraia bambusicola.
    Deng H; Gao R; Liao X; Cai Y
    Res Microbiol; 2017 Sep; 168(7):664-672. PubMed ID: 28549739
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome Sequencing and Analysis of the Hypocrellin-Producing Fungus
    Zhao N; Li D; Guo BJ; Tao X; Lin X; Yan SZ; Chen SL
    Front Microbiol; 2020; 11():643. PubMed ID: 32373091
    [No Abstract]   [Full Text] [Related]  

  • 11. De Novo Transcriptome Assembly in Shiraia bambusicola to Investigate Putative Genes Involved in the Biosynthesis of Hypocrellin A.
    Zhao N; Lin X; Qi SS; Luo ZM; Chen SL; Yan SZ
    Int J Mol Sci; 2016 Feb; 17(3):311. PubMed ID: 26927096
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced hypocrellin production via coexpression of alpha-amylase and hemoglobin genes in Shiraia bambusicola.
    Gao R; Deng H; Guan Z; Liao X; Cai Y
    AMB Express; 2018 May; 8(1):71. PubMed ID: 29721676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of microbial elicitor on production of hypocrellin by Shiraia bambusicola.
    Du W; Liang Z; Zou X; Han Y; Liang J; Yu J; Chen W; Wang Y; Sun C
    Folia Microbiol (Praha); 2013 Jul; 58(4):283-9. PubMed ID: 23229285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature-responsive regulation of the fermentation of hypocrellin A by Shiraia bambusicola (GDMCC 60438).
    Wen Y; Liao B; Yan X; Wu Z; Tian X
    Microb Cell Fact; 2022 Jul; 21(1):135. PubMed ID: 35787717
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sequencing and Functional Annotation of the Whole Genome of
    Ren X; Liu Y; Tan Y; Huang Y; Liu Z; Jiang X
    G3 (Bethesda); 2020 Jan; 10(1):23-35. PubMed ID: 31712259
    [No Abstract]   [Full Text] [Related]  

  • 16. Gentic overexpression increases production of hypocrellin A in Shiraia bambusicola S4201.
    Li D; Zhao N; Guo BJ; Lin X; Chen SL; Yan SZ
    J Microbiol; 2019 Feb; 57(2):154-162. PubMed ID: 30706344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptomic responses involved in enhanced production of hypocrellin A by addition of Triton X-100 in submerged cultures of Shiraia bambusicola.
    Lei XY; Zhang MY; Ma YJ; Wang JW
    J Ind Microbiol Biotechnol; 2017 Oct; 44(10):1415-1429. PubMed ID: 28685359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterisation of a monooxygenase in Shiraia bambusicola.
    Deng H; Gao R; Liao X; Cai Y
    Microbiology (Reading); 2018 Sep; 164(9):1180-1188. PubMed ID: 30028664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modular engineering of Shiraia bambusicola for hypocrellin production through an efficient CRISPR system.
    Deng H; Liang W; Fan TP; Zheng X; Cai Y
    Int J Biol Macromol; 2020 Dec; 165(Pt A):796-803. PubMed ID: 33010268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitric oxide donor sodium nitroprusside-induced transcriptional changes and hypocrellin biosynthesis of Shiraia sp. S9.
    Ma YJ; Li XP; Wang Y; Wang JW
    Microb Cell Fact; 2021 Apr; 20(1):92. PubMed ID: 33910564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.