BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 31522724)

  • 1. Facile actuation of aqueous droplets on a superhydrophobic surface using magnetotactic bacteria for digital microfluidic applications.
    Rismani Yazdi S; Agrawal P; Morales E; Stevens CA; Oropeza L; Davies PL; Escobedo C; Oleschuk RD
    Anal Chim Acta; 2019 Nov; 1085():107-116. PubMed ID: 31522724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. "Particle-Free" Magnetic Actuation of Droplets on Superhydrophobic Surfaces Using Dissolved Paramagnetic Salts.
    Mats L; Logue F; Oleschuk RD
    Anal Chem; 2016 Oct; 88(19):9486-9494. PubMed ID: 27605120
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Throughput Microfluidic Sorting of Live Magnetotactic Bacteria.
    Tay A; Pfeiffer D; Rowe K; Tannenbaum A; Popp F; Strangeway R; Schüler D; Di Carlo D
    Appl Environ Microbiol; 2018 Sep; 84(17):. PubMed ID: 29959254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An investigation into the kinematics of magnetically driven droplets on various (super)hydrophobic surfaces and their application to an automated multi-droplet platform.
    Agrawal P; Bachus KJ; Carriere G; Grouse P; Oleschuk RD
    Anal Bioanal Chem; 2019 Aug; 411(21):5393-5403. PubMed ID: 30291386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facile Actuation of Organic and Aqueous Droplets on Slippery Liquid-Infused Porous Surfaces for the Application of On-Chip Polymer Synthesis and Liquid-Liquid Extraction.
    Agrawal P; Salomons TT; Chiriac DS; Ross AC; Oleschuk RD
    ACS Appl Mater Interfaces; 2019 Aug; 11(31):28327-28335. PubMed ID: 31291086
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aqueous Droplets Used as Enzymatic Microreactors and Their Electromagnetic Actuation.
    Al-Kaidy H; Kuthan K; Hering T; Tippkötter N
    J Vis Exp; 2017 Aug; (126):. PubMed ID: 28872132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Easy route to superhydrophobic copper-based wire-guided droplet microfluidic systems.
    Mumm F; van Helvoort AT; Sikorski P
    ACS Nano; 2009 Sep; 3(9):2647-52. PubMed ID: 19681579
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superhydrophobic surfaces as an on-chip microfluidic toolkit for total droplet control.
    Draper MC; Crick CR; Orlickaite V; Turek VA; Parkin IP; Edel JB
    Anal Chem; 2013 Jun; 85(11):5405-10. PubMed ID: 23627493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Digital microfluidics-enabled single-molecule detection by printing and sealing single magnetic beads in femtoliter droplets.
    Witters D; Knez K; Ceyssens F; Puers R; Lammertyn J
    Lab Chip; 2013 Jun; 13(11):2047-54. PubMed ID: 23609603
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlled, synchronized actuation of microdroplets by gravity in a superhydrophobic, 3D-printed device.
    Oomen PE; Mulder JPSH; Verpoorte E; Oleschuk RD
    Anal Chim Acta; 2017 Oct; 988():50-57. PubMed ID: 28916103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A droplet-to-digital (D2D) microfluidic device for single cell assays.
    Shih SC; Gach PC; Sustarich J; Simmons BA; Adams PD; Singh S; Singh AK
    Lab Chip; 2015 Jan; 15(1):225-36. PubMed ID: 25354549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bidirectional Droplet Manipulation on Magnetically Actuated Superhydrophobic Ratchet Surfaces.
    Son C; Yang Z; Kim S; Ferreira PM; Feng J; Kim S
    ACS Nano; 2023 Dec; 17(23):23702-23713. PubMed ID: 37856876
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated Droplet-Based Microfluidic Platform for Multiplexed Analysis of Biochemical Markers in Small Volumes.
    Cedillo-Alcantar DF; Han YD; Choi J; Garcia-Cordero JL; Revzin A
    Anal Chem; 2019 Apr; 91(8):5133-5141. PubMed ID: 30834743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetically manipulated droplet splitting on a 3D-printed device to carry out a complexometric assay.
    Hutama TJ; Oleschuk RD
    Lab Chip; 2017 Jul; 17(15):2640-2649. PubMed ID: 28685782
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Digital Microfluidics: Magnetic Transportation and Coalescence of Sessile Droplets on Hydrophobic Surfaces.
    Hassan MR; Zhang J; Wang C
    Langmuir; 2021 May; 37(19):5823-5837. PubMed ID: 33961445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetic digital microfluidics - a review.
    Zhang Y; Nguyen NT
    Lab Chip; 2017 Mar; 17(6):994-1008. PubMed ID: 28220916
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic on-demand droplet merging using surface acoustic waves.
    Sesen M; Alan T; Neild A
    Lab Chip; 2014 Sep; 14(17):3325-33. PubMed ID: 24972001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Precision ejection of microfluidic droplets into air with a superhydrophobic outlet.
    Zhang P; Chang KC; Abate AR
    Lab Chip; 2021 Apr; 21(8):1484-1491. PubMed ID: 33656500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Droplets merging through wireless ultrasonic actuation.
    Nayak PP; Kar DP; Bhuyan S
    Ultrasonics; 2016 Jan; 64():83-8. PubMed ID: 26299402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetosomes on surface: an imaging study approach.
    Gojzewski H; Makowski M; Hashim A; Kopcansky P; Tomori Z; Timko M
    Scanning; 2012; 34(3):159-69. PubMed ID: 21953296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.