BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 31522724)

  • 21. Path-programmable water droplet manipulations on an adhesion controlled superhydrophobic surface.
    Seo J; Lee SK; Lee J; Seung Lee J; Kwon H; Cho SW; Ahn JH; Lee T
    Sci Rep; 2015 Jul; 5():12326. PubMed ID: 26202206
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Droplet motion on designed microtextured superhydrophobic surfaces with tunable wettability.
    Fang G; Li W; Wang X; Qiao G
    Langmuir; 2008 Oct; 24(20):11651-60. PubMed ID: 18788770
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Droplet-driven transports on superhydrophobic-patterned surface microfluidics.
    Xing S; Harake RS; Pan T
    Lab Chip; 2011 Nov; 11(21):3642-8. PubMed ID: 21918770
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Motorized actuation system to perform droplet operations on printed plastic sheets.
    Kong T; Brien R; Njus Z; Kalwa U; Pandey S
    Lab Chip; 2016 May; 16(10):1861-72. PubMed ID: 27080172
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Detaching droplets in immiscible fluids from a solid substrate with the help of electrowetting.
    Hong J; Lee SJ
    Lab Chip; 2015 Feb; 15(3):900-7. PubMed ID: 25500988
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Full-range magnetic manipulation of droplets via surface energy traps enables complex bioassays.
    Zhang Y; Wang TH
    Adv Mater; 2013 Jun; 25(21):2903-8. PubMed ID: 23529938
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Magnetotactic bacteria used to generate electricity based on Faraday's law of electromagnetic induction.
    Smit BA; Van Zyl E; Joubert JJ; Meyer W; Prévéral S; Lefèvre CT; Venter SN
    Lett Appl Microbiol; 2018 May; 66(5):362-367. PubMed ID: 29432641
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hands-off preparation of monodisperse emulsion droplets using a poly(dimethylsiloxane) microfluidic chip for droplet digital PCR.
    Tanaka H; Yamamoto S; Nakamura A; Nakashoji Y; Okura N; Nakamoto N; Tsukagoshi K; Hashimoto M
    Anal Chem; 2015 Apr; 87(8):4134-43. PubMed ID: 25822401
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Digital Microfluidic Mixing via Reciprocating Motions of Droplets Driven by Contact Charge Electrophoresis.
    Kim J; Kim T; Ji I; Hong J
    Micromachines (Basel); 2022 Apr; 13(4):. PubMed ID: 35457899
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Manipulating and dispensing micro/nanoliter droplets by superhydrophobic needle nozzles.
    Dong Z; Ma J; Jiang L
    ACS Nano; 2013 Nov; 7(11):10371-9. PubMed ID: 24116931
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A poly(dimethylsiloxane) microfluidic sheet reversibly adhered on a glass plate for creation of emulsion droplets for droplet digital PCR.
    Nakashoji Y; Tanaka H; Tsukagoshi K; Hashimoto M
    Electrophoresis; 2017 Jan; 38(2):296-304. PubMed ID: 27568642
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electrical actuation of dielectric droplets by negative liquid dielectrophoresis.
    Piao Y; Yu K; Jones TB; Wang W
    Electrophoresis; 2021 Dec; 42(23):2490-2497. PubMed ID: 34310746
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A light-induced dielectrophoretic droplet manipulation platform.
    Park SY; Kalim S; Callahan C; Teitell MA; Chiou EP
    Lab Chip; 2009 Nov; 9(22):3228-35. PubMed ID: 19865729
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Magnetotactic bacteria and magnetosomes - Scope and challenges.
    Jacob JJ; Suthindhiran K
    Mater Sci Eng C Mater Biol Appl; 2016 Nov; 68():919-928. PubMed ID: 27524094
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lithography-Free Technology for the Preparation of Digital Microfluidic (DMF) Lab-Chips with Droplet Actuation by Optoelectrowetting (OEW).
    Doering C; Strassner J; Fouckhardt H
    Int J Anal Chem; 2022; 2022():2011170. PubMed ID: 35719274
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Orbital Electrowetting-on-Dielectric for Droplet Manipulation on Superhydrophobic Surfaces.
    Tan J; Fan Z; Zhou M; Liu T; Sun S; Chen G; Song Y; Wang Z; Jiang D
    Adv Mater; 2024 Jun; 36(24):e2314346. PubMed ID: 38582970
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An integrated droplet-digital microfluidic system for on-demand droplet creation, mixing, incubation, and sorting.
    Ahmadi F; Samlali K; Vo PQN; Shih SCC
    Lab Chip; 2019 Jan; 19(3):524-535. PubMed ID: 30633267
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Efficient mixing of microliter droplets as micro-bioreactors using paramagnetic microparticles manipulated by external magnetic field.
    Takei T; Sakoguchi S; Yoshida M
    J Biosci Bioeng; 2018 Nov; 126(5):649-652. PubMed ID: 29914802
    [TBL] [Abstract][Full Text] [Related]  

  • 39. EWOD (electrowetting on dielectric) digital microfluidics powered by finger actuation.
    Peng C; Zhang Z; Kim CJ; Ju YS
    Lab Chip; 2014 Mar; 14(6):1117-22. PubMed ID: 24452784
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nanoparticle-Regulated Semiartificial Magnetotactic Bacteria with Tunable Magnetic Moment and Magnetic Sensitivity.
    Li Q; Chen H; Feng X; Yu C; Feng F; Chai Y; Lu P; Song T; Wang X; Yao L
    Small; 2019 Apr; 15(15):e1900427. PubMed ID: 30844151
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.