These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 31522724)

  • 41. A Look into the Biochemistry of Magnetosome Biosynthesis in Magnetotactic Bacteria.
    Barber-Zucker S; Zarivach R
    ACS Chem Biol; 2017 Jan; 12(1):13-22. PubMed ID: 27930882
    [TBL] [Abstract][Full Text] [Related]  

  • 42. General digital microfluidic platform manipulating dielectric and conductive droplets by dielectrophoresis and electrowetting.
    Fan SK; Hsieh TH; Lin DY
    Lab Chip; 2009 May; 9(9):1236-42. PubMed ID: 19370242
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Magnetotactic Bacteria: Magnetism Beyond Magnetosomes.
    Marcuello C; Chambel L; Rodrigues MS; Ferreira LP; Cruz MM
    IEEE Trans Nanobioscience; 2018 Oct; 17(4):555-559. PubMed ID: 30371384
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Magnetically-Actuated Mixing and Merging of Acid-Base Micro-Droplets on Open Surfaces: Preliminary Study.
    Khaw MK; Mohd-Yasin F; Nguyen NT
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29857584
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Discrete microfluidics with electrochemical detection.
    Lindsay S; Vázquez T; Egatz-Gómez A; Loyprasert S; Garcia AA; Wang J
    Analyst; 2007 May; 132(5):412-6. PubMed ID: 17471386
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Single-sided continuous optoelectrowetting (SCOEW) for droplet manipulation with light patterns.
    Park SY; Teitell MA; Chiou EP
    Lab Chip; 2010 Jul; 10(13):1655-61. PubMed ID: 20448870
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Advanced microfluidic droplet manipulation based on piezoelectric actuation.
    Shemesh J; Bransky A; Khoury M; Levenberg S
    Biomed Microdevices; 2010 Oct; 12(5):907-14. PubMed ID: 20559875
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Formation of Core-Shell Nanoparticles Composed of Magnetite and Samarium Oxide in Magnetospirillum magneticum Strain RSS-1.
    Shimoshige H; Nakajima Y; Kobayashi H; Yanagisawa K; Nagaoka Y; Shimamura S; Mizuki T; Inoue A; Maekawa T
    PLoS One; 2017; 12(1):e0170932. PubMed ID: 28125741
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A compact and facile microfluidic droplet creation device using a piezoelectric diaphragm micropump for droplet digital PCR platforms.
    Okura N; Nakashoji Y; Koshirogane T; Kondo M; Tanaka Y; Inoue K; Hashimoto M
    Electrophoresis; 2017 Oct; 38(20):2666-2672. PubMed ID: 28657130
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Pushbutton-activated microfluidic dropenser for droplet digital PCR.
    Park J; Lee KG; Han DH; Lee JS; Lee SJ; Park JK
    Biosens Bioelectron; 2021 Jun; 181():113159. PubMed ID: 33773218
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A feedback control system for high-fidelity digital microfluidics.
    Shih SC; Fobel R; Kumar P; Wheeler AR
    Lab Chip; 2011 Feb; 11(3):535-40. PubMed ID: 21038034
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Viscosity based droplet size controlling in negative pressure driven droplets generator for large-scale particle synthesis.
    Li H; Xue Y; Xu M; Zhao W; Zong C; Liu X; Zhang Q
    Electrophoresis; 2017 Jul; 38(13-14):1736-1742. PubMed ID: 28432689
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Magnetotactic bacteria: concepts, conundrums, and insights from a novel in situ approach using digital holographic microscopy (DHM).
    Barr CR; Bedrossian M; Lohmann KJ; Nealson KH
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2022 Jan; 208(1):107-124. PubMed ID: 35194649
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Magnetotactic bacteria as potential sources of bioproducts.
    Araujo AC; Abreu F; Silva KT; Bazylinski DA; Lins U
    Mar Drugs; 2015 Jan; 13(1):389-430. PubMed ID: 25603340
    [TBL] [Abstract][Full Text] [Related]  

  • 55. An electrohydrodynamic technique for rapid mixing in stationary droplets on digital microfluidic platforms.
    Samiei E; de Leon Derby MD; den Berg AV; Hoorfar M
    Lab Chip; 2017 Jan; 17(2):227-234. PubMed ID: 27957575
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Water-oil core-shell droplets for electrowetting-based digital microfluidic devices.
    Brassard D; Malic L; Normandin F; Tabrizian M; Veres T
    Lab Chip; 2008 Aug; 8(8):1342-9. PubMed ID: 18651077
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Single-Cell Resolution of Uncultured Magnetotactic Bacteria via Fluorescence-Coupled Electron Microscopy.
    Li J; Zhang H; Menguy N; Benzerara K; Wang F; Lin X; Chen Z; Pan Y
    Appl Environ Microbiol; 2017 Jun; 83(12):. PubMed ID: 28389550
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Engineered magnetosomes fused to functional molecule (protein A) provide a highly effective alternative to commercial immunomagnetic beads.
    Xu J; Liu L; He J; Ma S; Li S; Wang Z; Xu T; Jiang W; Wen Y; Li Y; Tian J; Li F
    J Nanobiotechnology; 2019 Mar; 17(1):37. PubMed ID: 30841927
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Controlled droplet discretization and manipulation using membrane displacement traps.
    Padmanabhan S; Misteli T; DeVoe DL
    Lab Chip; 2017 Oct; 17(21):3717-3724. PubMed ID: 28990023
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fluoropolymer surface coatings to control droplets in microfluidic devices.
    Riche CT; Zhang C; Gupta M; Malmstadt N
    Lab Chip; 2014 Jun; 14(11):1834-41. PubMed ID: 24722827
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.