BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 31523367)

  • 21. Snai1 represses Nanog to promote embryonic stem cell differentiation.
    Galvagni F; Neri F
    Genom Data; 2015 Jun; 4():82-3. PubMed ID: 26484184
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Epigenetic modifications of stem cells: a paradigm for the control of cardiac progenitor cells.
    Zhou Y; Kim J; Yuan X; Braun T
    Circ Res; 2011 Oct; 109(9):1067-81. PubMed ID: 21998298
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regulation of 'stemness' and stem cell differentiation by microRNAs.
    Sartipy P; Olsson B; Hyllner J; Synnergren J
    IDrugs; 2009 Aug; 12(8):492-6. PubMed ID: 19629883
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Insights into the transcriptional and chromatin regulation of mesenchymal stem cells in musculo-skeletal tissues.
    Benayahu D; Shefer G; Shur I
    Ann Anat; 2009 Jan; 191(1):2-12. PubMed ID: 18926677
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Epigenetic Mechanisms Regulating Mesenchymal Stem Cell Differentiation.
    Pérez-Campo FM; Riancho JA
    Curr Genomics; 2015 Dec; 16(6):368-83. PubMed ID: 27019612
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Critical roles of protein methyltransferases and demethylases in the regulation of embryonic stem cell fate.
    Vougiouklakis T; Nakamura Y; Saloura V
    Epigenetics; 2017; 12(12):1015-1027. PubMed ID: 29099285
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Small molecules for mesenchymal stem cell fate determination.
    Cheng YH; Dong JC; Bian Q
    World J Stem Cells; 2019 Dec; 11(12):1084-1103. PubMed ID: 31875870
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stem Cells from Dental Pulp: What Epigenetics Can Do with Your Tooth.
    Rodas-Junco BA; Canul-Chan M; Rojas-Herrera RA; De-la-Peña C; Nic-Can GI
    Front Physiol; 2017; 8():999. PubMed ID: 29270128
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Maintenance of active chromatin states by HMGN2 is required for stem cell identity in a pluripotent stem cell model.
    Garza-Manero S; Sindi AAA; Mohan G; Rehbini O; Jeantet VHM; Bailo M; Latif FA; West MP; Gurden R; Finlayson L; Svambaryte S; West AG; West KL
    Epigenetics Chromatin; 2019 Dec; 12(1):73. PubMed ID: 31831052
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Roles of autophagy in controlling stem cell identity: a perspective of self-renewal and differentiation.
    Sotthibundhu A; Promjuntuek W; Liu M; Shen S; Noisa P
    Cell Tissue Res; 2018 Nov; 374(2):205-216. PubMed ID: 29696372
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Epigenetic regulation of self-renewal and fate determination in neural stem cells.
    Mohamed Ariff I; Mitra A; Basu A
    J Neurosci Res; 2012 Mar; 90(3):529-39. PubMed ID: 22183977
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chemical biology in stem cell research.
    Choi Y; Nam TG
    Arch Pharm Res; 2012 Feb; 35(2):281-97. PubMed ID: 22370782
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Emerging Strategies for Stem Cell Lineage Commitment in Tissue Engineering and Regenerative Medicine.
    Ort C; Dayekh K; Xing M; Mequanint K
    ACS Biomater Sci Eng; 2018 Nov; 4(11):3644-3657. PubMed ID: 33429592
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Control of stem cell fate by engineering their micro and nanoenvironment.
    Griffin MF; Butler PE; Seifalian AM; Kalaskar DM
    World J Stem Cells; 2015 Jan; 7(1):37-50. PubMed ID: 25621104
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mesenchymal stem cell differentiation and usage for biotechnology applications: tissue engineering and food manufacturing.
    Benayahu D
    Biomater Transl; 2022; 3(1):17-23. PubMed ID: 35837346
    [TBL] [Abstract][Full Text] [Related]  

  • 36. ATP-Dependent Chromatin Remodeling Complex in the Lineage Specification of Mesenchymal Stem Cells.
    Du W; Guo D; Du W
    Stem Cells Int; 2020; 2020():8839703. PubMed ID: 32963551
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recent advances in stem cell neurobiology.
    Ostenfeld T; Svendsen CN
    Adv Tech Stand Neurosurg; 2003; 28():3-89. PubMed ID: 12627808
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In or out stemness: comparing growth factor signalling in mouse embryonic stem cells and primordial germ cells.
    De Felici M; Farini D; Dolci S
    Curr Stem Cell Res Ther; 2009 May; 4(2):87-97. PubMed ID: 19442193
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Energy metabolism in the acquisition and maintenance of stemness.
    Folmes CD; Terzic A
    Semin Cell Dev Biol; 2016 Apr; 52():68-75. PubMed ID: 26868758
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Coexpression of gene Oct4 and Nanog initiates stem cell characteristics in hepatocellular carcinoma and promotes epithelial-mesenchymal transition through activation of Stat3/Snail signaling.
    Yin X; Zhang BH; Zheng SS; Gao DM; Qiu SJ; Wu WZ; Ren ZG
    J Hematol Oncol; 2015 Mar; 8():23. PubMed ID: 25879771
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.