These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

346 related articles for article (PubMed ID: 31523770)

  • 1. Genetic Manipulation of MRSA Using CRISPR/Cas9 Technology.
    Chen W; Ji Q
    Methods Mol Biol; 2020; 2069():113-124. PubMed ID: 31523770
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPR-Cas9 and CRISPR-Assisted Cytidine Deaminase Enable Precise and Efficient Genome Editing in Klebsiella pneumoniae.
    Wang Y; Wang S; Chen W; Song L; Zhang Y; Shen Z; Yu F; Li M; Ji Q
    Appl Environ Microbiol; 2018 Dec; 84(23):. PubMed ID: 30217854
    [No Abstract]   [Full Text] [Related]  

  • 3. CRISPR/Cas9-based Genome Editing of Pseudomonas aeruginosa.
    Chen W; Ji Q
    Methods Mol Biol; 2024; 2721():3-12. PubMed ID: 37819511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR/Cas9-based efficient genome editing in Staphylococcus aureus.
    Liu Q; Jiang Y; Shao L; Yang P; Sun B; Yang S; Chen D
    Acta Biochim Biophys Sin (Shanghai); 2017 Sep; 49(9):764-770. PubMed ID: 28910979
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid and Efficient Genome Editing in Staphylococcus aureus by Using an Engineered CRISPR/Cas9 System.
    Chen W; Zhang Y; Yeo WS; Bae T; Ji Q
    J Am Chem Soc; 2017 Mar; 139(10):3790-3795. PubMed ID: 28218837
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR-dCas9 Mediated Cytosine Deaminase Base Editing in
    Yu S; Price MA; Wang Y; Liu Y; Guo Y; Ni X; Rosser SJ; Bi C; Wang M
    ACS Synth Biol; 2020 Jul; 9(7):1781-1789. PubMed ID: 32551562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly efficient base editing in
    Gu T; Zhao S; Pi Y; Chen W; Chen C; Liu Q; Li M; Han D; Ji Q
    Chem Sci; 2018 Mar; 9(12):3248-3253. PubMed ID: 29780457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Forced Recycling of an AMA1-Based Genome-Editing Plasmid Allows for Efficient Multiple Gene Deletion/Integration in the Industrial Filamentous Fungus
    Katayama T; Nakamura H; Zhang Y; Pascal A; Fujii W; Maruyama JI
    Appl Environ Microbiol; 2019 Feb; 85(3):. PubMed ID: 30478227
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR-Cas9-mediated genome editing in apple and grapevine.
    Osakabe Y; Liang Z; Ren C; Nishitani C; Osakabe K; Wada M; Komori S; Malnoy M; Velasco R; Poli M; Jung MH; Koo OJ; Viola R; Nagamangala Kanchiswamy C
    Nat Protoc; 2018 Dec; 13(12):2844-2863. PubMed ID: 30390050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly efficient single base editing in Aspergillus niger with CRISPR/Cas9 cytidine deaminase fusion.
    Huang L; Dong H; Zheng J; Wang B; Pan L
    Microbiol Res; 2019; 223-225():44-50. PubMed ID: 31178050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR-induced indels and base editing using the Staphylococcus aureus Cas9 in potato.
    Veillet F; Kermarrec MP; Chauvin L; Chauvin JE; Nogué F
    PLoS One; 2020; 15(8):e0235942. PubMed ID: 32804931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient and Scalable Precision Genome Editing in
    Penewit K; Holmes EA; McLean K; Ren M; Waalkes A; Salipante SJ
    mBio; 2018 Feb; 9(1):. PubMed ID: 29463653
    [No Abstract]   [Full Text] [Related]  

  • 13. Development of an Efficient Genome Editing Tool in Bacillus licheniformis Using CRISPR-Cas9 Nickase.
    Li K; Cai D; Wang Z; He Z; Chen S
    Appl Environ Microbiol; 2018 Mar; 84(6):. PubMed ID: 29330178
    [No Abstract]   [Full Text] [Related]  

  • 14. CRISPR-Cas9
    Li Q; Seys FM; Minton NP; Yang J; Jiang Y; Jiang W; Yang S
    Biotechnol Bioeng; 2019 Jun; 116(6):1475-1483. PubMed ID: 30739328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One-step high-efficiency CRISPR/Cas9-mediated genome editing in Streptomyces.
    Huang H; Zheng G; Jiang W; Hu H; Lu Y
    Acta Biochim Biophys Sin (Shanghai); 2015 Apr; 47(4):231-43. PubMed ID: 25739462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonviral Genome Editing Based on a Polymer-Derivatized CRISPR Nanocomplex for Targeting Bacterial Pathogens and Antibiotic Resistance.
    Kang YK; Kwon K; Ryu JS; Lee HN; Park C; Chung HJ
    Bioconjug Chem; 2017 Apr; 28(4):957-967. PubMed ID: 28215090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a CRISPR/Cas9 System for Methylococcus capsulatus
    Tapscott T; Guarnieri MT; Henard CA
    Appl Environ Microbiol; 2019 Jun; 85(11):. PubMed ID: 30926729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR/Cas9-Based Genome Editing Toolbox for Arabidopsis thaliana.
    Miki D; Zinta G; Zhang W; Peng F; Feng Z; Zhu JK
    Methods Mol Biol; 2021; 2200():121-146. PubMed ID: 33175375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of CRISPR/Cas9 for Targeted Mutagenesis in Sorghum.
    Char SN; Lee H; Yang B
    Curr Protoc Plant Biol; 2020 Jun; 5(2):e20112. PubMed ID: 32501639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR base editors: genome editing without double-stranded breaks.
    Eid A; Alshareef S; Mahfouz MM
    Biochem J; 2018 Jun; 475(11):1955-1964. PubMed ID: 29891532
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.