These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 31523863)

  • 41. Investigation of Voltage Range and Self-Discharge in Aqueous Zinc-Ion Hybrid Supercapacitors.
    Yang J; Bissett MA; Dryfe RAW
    ChemSusChem; 2021 Apr; 14(7):1700-1709. PubMed ID: 33480141
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Boosting the energy storage densities of supercapacitors by incorporating N-doped graphene quantum dots into cubic porous carbon.
    Li Z; Bu F; Wei J; Yao W; Wang L; Chen Z; Pan D; Wu M
    Nanoscale; 2018 Dec; 10(48):22871-22883. PubMed ID: 30488932
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Block Copolymer-Directed Facile Synthesis of N-Doped Mesoporous Graphitic Carbon for Reliable, High-Performance Zn Ion Hybrid Supercapacitor.
    Kim KW; Park B; Kim J; Seok H; Kim T; Jo C; Kim JK
    ACS Appl Mater Interfaces; 2023 Dec; 15(50):57905-57912. PubMed ID: 37040434
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Controllable construction of hierarchically porous carbon composite of nanosheet network for advanced dual-carbon potassium-ion capacitors.
    Li Q; Wang T; Shu T; Miao Y; Pan X; Tao Y; Qi J; Sui Y; He Y; Meng Q; Wei F; Ren Y; Zhao Y; Ju Z; Wei L
    J Colloid Interface Sci; 2022 Sep; 621():169-179. PubMed ID: 35461132
    [TBL] [Abstract][Full Text] [Related]  

  • 45. In-situ regulation of zinc metal surface for Dendrite-Free Zinc-ion hybrid supercapacitors.
    Long Y; Huang X; Li Y; Yi M; Hou J; Zhou X; Hu Q; Zheng Q; Lin D
    J Colloid Interface Sci; 2022 May; 614():205-213. PubMed ID: 35091148
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Towards High-Performance Zinc-Based Hybrid Supercapacitors via Macropores-Based Charge Storage in Organic Electrolytes.
    Qiu X; Wang N; Wang Z; Wang F; Wang Y
    Angew Chem Int Ed Engl; 2021 Apr; 60(17):9610-9617. PubMed ID: 33599370
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ex-situ nitrogen-doped porous carbons as electrode materials for high performance supercapacitor.
    Sylla NF; Ndiaye NM; Ngom BD; Mutuma BK; Momodu D; Chaker M; Manyala N
    J Colloid Interface Sci; 2020 Jun; 569():332-345. PubMed ID: 32126346
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Boosting Zinc Hybrid Supercapacitor Performance via Thiol Functionalization of Graphene-Based Cathodes.
    Valentini C; Montes-García V; Ciesielski A; Samorì P
    Adv Sci (Weinh); 2024 Jun; 11(22):e2309041. PubMed ID: 38509829
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Unlocking the Interfacial Adsorption-Intercalation Pseudocapacitive Storage Limit to Enabling All-Climate, High Energy/Power Density and Durable Zn-Ion Batteries.
    Yang M; Wang Y; Ma D; Zhu J; Mi H; Zhang Z; Wu B; Zeng L; Chen M; Chen J; Zhang P
    Angew Chem Int Ed Engl; 2023 Jul; 62(27):e202304400. PubMed ID: 37158757
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Ni
    Wang W; Yang C; Han D; Yu S; Qi W; Ling R; Liu G
    J Colloid Interface Sci; 2024 Jan; 654(Pt A):709-718. PubMed ID: 37866043
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Self-Assembled Carbon Superstructures Achieving Ultra-Stable and Fast Proton-Coupled Charge Storage Kinetics.
    Song Z; Miao L; Ruhlmann L; Lv Y; Zhu D; Li L; Gan L; Liu M
    Adv Mater; 2021 Dec; 33(49):e2104148. PubMed ID: 34622501
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A Better Zn-Ion Storage Device: Recent Progress for Zn-Ion Hybrid Supercapacitors.
    Jin J; Geng X; Chen Q; Ren TL
    Nanomicro Lett; 2022 Feb; 14(1):64. PubMed ID: 35199258
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Beyond Activated Carbon: Graphite-Cathode-Derived Li-Ion Pseudocapacitors with High Energy and High Power Densities.
    Wang G; Oswald S; Löffler M; Müllen K; Feng X
    Adv Mater; 2019 Apr; 31(14):e1807712. PubMed ID: 30767311
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Gradient Pores Enhance Charge Storage Density of Carbonaceous Cathodes for Zn-Ion Capacitor.
    Li X; Cai C; Hu P; Zhang B; Wu P; Fan H; Chen Z; Zhou L; Mai L; Fan HJ
    Adv Mater; 2024 Jun; 36(23):e2400184. PubMed ID: 38348892
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Boosting the K
    Xu Y; Sun X; Li Z; Wei L; Yao G; Niu H; Yang Y; Zheng F; Chen Q
    Nanoscale; 2021 Dec; 13(46):19634-19641. PubMed ID: 34816865
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Iodine-Doped Hollow Carbon Nanocages without Templates Strategy for Boosting Zinc-Ion Storage by Nucleophilicity.
    Niu R; Fan H; Ban Q; Zhou D; Zhao L; Yu J; Chen Q; Hu X
    Materials (Basel); 2024 Feb; 17(4):. PubMed ID: 38399089
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A Silk Protein-Based Eutectogel as a Freeze-Resistant and Flexible Electrolyte for Zn-Ion Hybrid Supercapacitors.
    Li Z; Xu X; Jiang Z; Chen J; Tu J; Wang X; Gu C
    ACS Appl Mater Interfaces; 2022 Oct; 14(39):44821-44831. PubMed ID: 36125802
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Hierarchical NiSe
    Zhou W; He J; Zhu D; Li J; Chen Y
    ACS Appl Mater Interfaces; 2020 Aug; 12(31):34931-34940. PubMed ID: 32643377
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A high performance lithium ion capacitor achieved by the integration of a Sn-C anode and a biomass-derived microporous activated carbon cathode.
    Sun F; Gao J; Zhu Y; Pi X; Wang L; Liu X; Qin Y
    Sci Rep; 2017 Feb; 7():40990. PubMed ID: 28155853
    [TBL] [Abstract][Full Text] [Related]  

  • 60. High Performance Lithium-Ion Hybrid Capacitors Employing Fe
    Zhang S; Li C; Zhang X; Sun X; Wang K; Ma Y
    ACS Appl Mater Interfaces; 2017 May; 9(20):17136-17144. PubMed ID: 28474525
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.