BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 31523877)

  • 1. Pyranine-Modified Amphiphilic Polymer Conetworks as Fluorescent Ratiometric pH Sensors.
    Ulrich S; Osypova A; Panzarasa G; Rossi RM; Bruns N; Boesel LF
    Macromol Rapid Commun; 2019 Nov; 40(21):e1900360. PubMed ID: 31523877
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical biochemical sensor for determining hydroperoxides in nonpolar organic liquids as archetype for sensors consisting of amphiphilic conetworks as immobilisation matrices.
    Hanko M; Bruns N; Tiller JC; Heinze J
    Anal Bioanal Chem; 2006 Nov; 386(5):1273-83. PubMed ID: 17019582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. pH determination by pyranine: medium-related artifacts and their correction.
    Avnir Y; Barenholz Y
    Anal Biochem; 2005 Dec; 347(1):34-41. PubMed ID: 16289011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly Sensitive Fluorescent pH Microsensors Based on the Ratiometric Dye Pyranine Immobilized on Silica Microparticles.
    Chandra A; Prasad S; Iuele H; Colella F; Rizzo R; D'Amone E; Gigli G; Del Mercato LL
    Chemistry; 2021 Sep; 27(53):13279. PubMed ID: 34363251
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly Sensitive Fluorescent pH Microsensors Based on the Ratiometric Dye Pyranine Immobilized on Silica Microparticles.
    Chandra A; Prasad S; Iuele H; Colella F; Rizzo R; D'Amone E; Gigli G; Del Mercato LL
    Chemistry; 2021 Sep; 27(53):13318-13324. PubMed ID: 34231936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro sensing of Cu(+) through a green fluorescence rise of pyranine.
    Saha T; Sengupta A; Hazra P; Talukdar P
    Photochem Photobiol Sci; 2014 Oct; 13(10):1427-33. PubMed ID: 25057967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical and spectroscopic study of pyranine fluorescent probe: role of intermediates in pyranine oxidation.
    Velásquez G; Ureta-Zañartu MS; López-Alarcón C; Aspée A
    J Phys Chem B; 2011 May; 115(20):6661-7. PubMed ID: 21539332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface functionalization of quantum dots with fine-structured pH-sensitive phospholipid polymer chains.
    Liu Y; Inoue Y; Ishihara K
    Colloids Surf B Biointerfaces; 2015 Nov; 135():490-496. PubMed ID: 26283498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solid-solid interface adsorption of proteins and enzymes in nanophase-separated amphiphilic conetworks.
    Dech S; Cramer T; Ladisch R; Bruns N; Tiller JC
    Biomacromolecules; 2011 May; 12(5):1594-601. PubMed ID: 21413720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rational Design of a Polymer-Based Ratiometric K
    Ning J; Liu H; Sun X; Song G; Shen M; Liao J; Su F; Tian Y
    ACS Appl Bio Mater; 2021 Feb; 4(2):1731-1739. PubMed ID: 35014519
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pyranine (8-hydroxy-1,3,6-pyrenetrisulfonate) as a probe of internal aqueous hydrogen ion concentration in phospholipid vesicles.
    Clement NR; Gould JM
    Biochemistry; 1981 Mar; 20(6):1534-8. PubMed ID: 6261798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Loading pyranine via purinergic receptors or hypotonic stress for measurement of cytosolic pH by imaging.
    Gan BS; Krump E; Shrode LD; Grinstein S
    Am J Physiol; 1998 Oct; 275(4):C1158-66. PubMed ID: 9755070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Dual Use of the Pyranine (HPTS) Fluorescent Probe: A Ground-State pH Indicator and an Excited-State Proton Transfer Probe.
    Nandi R; Amdursky N
    Acc Chem Res; 2022 Sep; 55(18):2728-2739. PubMed ID: 36053265
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ratiometric Fluorescent pH Probes Based on Glycopolymers.
    Li Z; Zhang P; Lu W; Peng L; Zhao Y; Chen G
    Macromol Rapid Commun; 2016 Sep; 37(18):1513-9. PubMed ID: 27439338
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One-pot preparation of cross-linked amphiphilic fluorescent polymer based on aggregation induced emission dyes.
    Wang K; Zhang X; Zhang X; Yang B; Li Z; Zhang Q; Huang Z; Wei Y
    Colloids Surf B Biointerfaces; 2015 Feb; 126():273-9. PubMed ID: 25576817
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescent Probes for Sugar Detection.
    Bruen D; Delaney C; Diamond D; Florea L
    ACS Appl Mater Interfaces; 2018 Nov; 10(44):38431-38437. PubMed ID: 30360068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An imaging pH optode for cell studies based on covalent attachment of 8-hydroxypyrene-1,3,6-trisulfonate to amino cellulose acetate films.
    Strömberg N; Mattsson E; Hakonen A
    Anal Chim Acta; 2009 Mar; 636(1):89-94. PubMed ID: 19231361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Imparting nanoparticle function with size-controlled amphiphilic polymers.
    Chen Y; Thakar R; Snee PT
    J Am Chem Soc; 2008 Mar; 130(12):3744-5. PubMed ID: 18321112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanophase-separated amphiphilic conetworks as versatile matrixes for optical chemical and biochemical sensors.
    Hanko M; Bruns N; Rentmeister S; Tiller JC; Heinze J
    Anal Chem; 2006 Sep; 78(18):6376-83. PubMed ID: 16970311
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical Chemical Sensor Using Intensity Ratiometric Fluorescence Signals for Fast and Reliable pH Determination.
    Frankær CG; Hussain KJ; Dörge TC; Sørensen TJ
    ACS Sens; 2019 Jan; 4(1):26-31. PubMed ID: 30592615
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.