These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 31524457)

  • 1. Elimination of Thermomechanical Noise in Piezoelectric Optomechanical Crystals.
    Ramp H; Hauer BD; Balram KC; Clark TJ; Srinivasan K; Davis JP
    Phys Rev Lett; 2019 Aug; 123(9):093603. PubMed ID: 31524457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wavelength transduction from a 3D microwave cavity to telecom using piezoelectric optomechanical crystals.
    Ramp H; Clark TJ; Hauer BD; Doolin CD; Balram KC; Srinivasan K; Davis JP
    Appl Phys Lett; 2020; 116(17):. PubMed ID: 34815582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microwave-to-optics conversion using a mechanical oscillator in its quantum groundstate.
    Forsch M; Stockill R; Wallucks A; Marinković I; Gärtner C; Norte RA; van Otten F; Fiore A; Srinivasan K; Gröblacher S
    Nat Phys; 2020; 16(1):. PubMed ID: 34795789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Slot-Mode Optomechanical Crystals: A Versatile Platform for Multimode Optomechanics.
    Grutter KE; Davanço MI; Srinivasan K
    Optica; 2015; 2(11):994-1001. PubMed ID: 26807432
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optomechanical ring resonator for efficient microwave-optical frequency conversion.
    Chen IT; Li B; Lee S; Chakravarthi S; Fu KM; Li M
    Nat Commun; 2023 Nov; 14(1):7594. PubMed ID: 37990000
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gallium Phosphide as a Piezoelectric Platform for Quantum Optomechanics.
    Stockill R; Forsch M; Beaudoin G; Pantzas K; Sagnes I; Braive R; Gröblacher S
    Phys Rev Lett; 2019 Oct; 123(16):163602. PubMed ID: 31702356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microwave-to-optical transduction using a mechanical supermode for coupling piezoelectric and optomechanical resonators.
    Wu M; Zeuthen E; Balram KC; Srinivasan K
    Phys Rev Appl; 2020 Jan; 13(1):. PubMed ID: 34796259
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optomechanical crystal with bound states in the continuum.
    Liu S; Tong H; Fang K
    Nat Commun; 2022 Jun; 13(1):3187. PubMed ID: 35676298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optomechanical dark mode.
    Dong C; Fiore V; Kuzyk MC; Wang H
    Science; 2012 Dec; 338(6114):1609-13. PubMed ID: 23160956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microwave-to-optical conversion with a gallium phosphide photonic crystal cavity.
    Hönl S; Popoff Y; Caimi D; Beccari A; Kippenberg TJ; Seidler P
    Nat Commun; 2022 Apr; 13(1):2065. PubMed ID: 35440549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-dimensional optomechanical crystal cavity with high quantum cooperativity.
    Ren H; Matheny MH; MacCabe GS; Luo J; Pfeifer H; Mirhosseini M; Painter O
    Nat Commun; 2020 Jul; 11(1):3373. PubMed ID: 32632132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optomechanical coupling between a multilayer graphene mechanical resonator and a superconducting microwave cavity.
    Singh V; Bosman SJ; Schneider BH; Blanter YM; Castellanos-Gomez A; Steele GA
    Nat Nanotechnol; 2014 Oct; 9(10):820-4. PubMed ID: 25150717
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multimode optomechanical system in the quantum regime.
    Nielsen WH; Tsaturyan Y; Møller CB; Polzik ES; Schliesser A
    Proc Natl Acad Sci U S A; 2017 Jan; 114(1):62-66. PubMed ID: 27999182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low Noise Opto-Electro-Mechanical Modulator for RF-to-Optical Transduction in Quantum Communications.
    Bonaldi M; Borrielli A; Di Giuseppe G; Malossi N; Morana B; Natali R; Piergentili P; Sarro PM; Serra E; Vitali D
    Entropy (Basel); 2023 Jul; 25(7):. PubMed ID: 37510034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of an ultra-low mode volume piezo-optomechanical quantum transducer.
    Chiappina P; Banker J; Meesala S; Lake D; Wood S; Painter O
    Opt Express; 2023 Jul; 31(14):22914-22927. PubMed ID: 37475390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical coupling to nanoscale optomechanical cavities for near quantum-limited motion transduction.
    Cohen JD; Meenehan SM; Painter O
    Opt Express; 2013 May; 21(9):11227-36. PubMed ID: 23669980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum many-body dynamics in optomechanical arrays.
    Ludwig M; Marquardt F
    Phys Rev Lett; 2013 Aug; 111(7):073603. PubMed ID: 23992065
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Overwhelming Thermomechanical Motion with Microwave Radiation Pressure Shot Noise.
    Teufel JD; Lecocq F; Simmonds RW
    Phys Rev Lett; 2016 Jan; 116(1):013602. PubMed ID: 26799018
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coherent coupling between radio frequency, optical, and acoustic waves in piezo-optomechanical circuits.
    Balram KC; Davanço MI; Song JD; Srinivasan K
    Nat Photonics; 2016 May; 10(5):346-352. PubMed ID: 27446234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bench-Top Cooling of a Microwave Mode Using an Optically Pumped Spin Refrigerator.
    Wu H; Mirkhanov S; Ng W; Oxborrow M
    Phys Rev Lett; 2021 Jul; 127(5):053604. PubMed ID: 34397251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.