These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 31524615)
1. Arsenic removal from highly-acidic wastewater with high arsenic content by copper-chloride synergistic reduction. Wang A; Zhou K; Zhang X; Zhou D; Peng C; Chen W Chemosphere; 2020 Jan; 238():124675. PubMed ID: 31524615 [TBL] [Abstract][Full Text] [Related]
2. Insights into removal of tetracycline by persulfate activation with peanut shell biochar coupled with amorphous Cu-doped FeOOH composite in aqueous solution. Xu J; Zhang X; Sun C; Wan J; He H; Wang F; Dai Y; Yang S; Lin Y; Zhan X Environ Sci Pollut Res Int; 2019 Jan; 26(3):2820-2834. PubMed ID: 30488247 [TBL] [Abstract][Full Text] [Related]
3. A novel strategy for arsenic removal from acid wastewater via strong reduction processing. Feng Z; Ning Y; Yang S; Yu J; Ouyang W; Li Y Environ Sci Pollut Res Int; 2023 Mar; 30(15):43886-43900. PubMed ID: 36670226 [TBL] [Abstract][Full Text] [Related]
4. Enhanced removal of arsenic from a highly laden industrial effluent using a combined coprecipitation/nano-adsorption process. Jiang Y; Hua M; Wu B; Ma H; Pan B; Zhang Q Environ Sci Pollut Res Int; 2014 May; 21(10):6729-35. PubMed ID: 24504774 [TBL] [Abstract][Full Text] [Related]
5. Efficient reductive recovery of arsenic from acidic wastewater by a UV/dithionite process. Yang X; Peng X; Lu X; He M; Yan J; Kong L Water Res; 2024 Nov; 265():122299. PubMed ID: 39180954 [TBL] [Abstract][Full Text] [Related]
6. Arsenic removal using a biopolymer chitosan sorbent. Chen CC; Chung YC J Environ Sci Health A Tox Hazard Subst Environ Eng; 2006; 41(4):645-58. PubMed ID: 16779938 [TBL] [Abstract][Full Text] [Related]
7. Arsenic removal and recovery from copper smelting wastewater using TiO2. Luo T; Cui J; Hu S; Huang Y; Jing C Environ Sci Technol; 2010 Dec; 44(23):9094-8. PubMed ID: 21053910 [TBL] [Abstract][Full Text] [Related]
8. Adsorption of As(III), As(V) and Cu(II) on zirconium oxide immobilized alginate beads in aqueous phase. Kwon OH; Kim JO; Cho DW; Kumar R; Baek SH; Kurade MB; Jeon BH Chemosphere; 2016 Oct; 160():126-33. PubMed ID: 27372261 [TBL] [Abstract][Full Text] [Related]
9. Enhanced dechlorination of chlorinated methanes and ethenes by chloride green rust in the presence of copper(II). Maithreepala RA; Doong RA Environ Sci Technol; 2005 Jun; 39(11):4082-90. PubMed ID: 15984786 [TBL] [Abstract][Full Text] [Related]
10. Highly efficient and energy-conserved flocculation of copper in wastewater by pulse-alternating current. Xu T; Lei X; Sun B; Yu G; Zeng Y Environ Sci Pollut Res Int; 2017 Sep; 24(25):20577-20586. PubMed ID: 28710738 [TBL] [Abstract][Full Text] [Related]
11. Integration of polyelectrolyte enhanced ultrafiltration and chemical reduction for metal-containing wastewater treatment and metal recovery. Yu JH; Chou YH; Liang YM; Li CW Water Sci Technol; 2015; 72(7):1096-101. PubMed ID: 26398024 [TBL] [Abstract][Full Text] [Related]
12. Zirconium/polyvinyl alcohol modified flat-sheet polyvinyldene fluoride membrane for decontamination of arsenic: Material design and optimization, study of mechanisms, and application prospects. Zhao D; Yu Y; Chen JP Chemosphere; 2016 Jul; 155():630-639. PubMed ID: 27174848 [TBL] [Abstract][Full Text] [Related]
13. Catalytic wet peroxide oxidation of aniline in wastewater using copper modified SBA-15 as catalyst. Kong L; Zhou X; Yao Y; Jian P; Diao G Environ Technol; 2016; 37(3):422-9. PubMed ID: 26227827 [TBL] [Abstract][Full Text] [Related]
14. Characteristics of molybdate-impregnated chitosan beads (MICB) in terms of arsenic removal from water and the application of a MICB-packed column to remove arsenic from wastewater. Chen CY; Chang TH; Kuo JT; Chen YF; Chung YC Bioresour Technol; 2008 Nov; 99(16):7487-94. PubMed ID: 18359225 [TBL] [Abstract][Full Text] [Related]
15. Arsenic and iron removal from groundwater by oxidation-coagulation at optimized pH: laboratory and field studies. Bordoloi S; Nath SK; Gogoi S; Dutta RK J Hazard Mater; 2013 Sep; 260():618-26. PubMed ID: 23827730 [TBL] [Abstract][Full Text] [Related]
16. Efficient copper removal from wastewater through montmorillonite-supported hydrogel adsorbent. Vesali-Naseh M; Barati A; Vesali Naseh MR Water Environ Res; 2019 Apr; 91(4):332-339. PubMed ID: 30624828 [TBL] [Abstract][Full Text] [Related]
17. Production of bioflocculants prepared from formaldehyde wastewater for the potential removal of arsenic. Zhao H; Zhong C; Chen H; Yao J; Tan L; Zhang Y; Zhou J J Environ Manage; 2016 May; 172():71-6. PubMed ID: 26921567 [TBL] [Abstract][Full Text] [Related]
18. Chloride-mediated enhancement in Cu(II)-catalyzed Fenton-like reaction: The overlooked reactive chlorine species. Xiao S; Liu T; Li N; Ding J; Chen J; Xu Y; Zhang L; Yang L; Zhou X; Ren N; Zhang Y Environ Pollut; 2024 Nov; 360():124586. PubMed ID: 39033841 [TBL] [Abstract][Full Text] [Related]
19. Effect of anions species on copper removal from wastewater by using mechanically activated calcium carbonate. Wen T; Zhao Y; Zhang T; Xiong B; Hu H; Zhang Q; Song S Chemosphere; 2019 Sep; 230():127-135. PubMed ID: 31102866 [TBL] [Abstract][Full Text] [Related]
20. Adsorptive removal of trivalent and pentavalent arsenic from aqueous solutions using iron and copper impregnated melanin extracted from the marine bacterium Pseudomonas stutzeri. Manirethan V; Raval K; Balakrishnan RM Environ Pollut; 2020 Feb; 257():113576. PubMed ID: 31744681 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]