These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 31524874)
1. In Silico Modeling Method for Computational Aquatic Toxicology of Endocrine Disruptors: A Software-Based Approach Using QSAR Toolbox. Bohlen ML; Jeon HP; Kim YJ; Sung B J Vis Exp; 2019 Aug; (150):. PubMed ID: 31524874 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of the OECD (Q)SAR Application Toolbox for the profiling of estrogen receptor binding affinities. Mombelli E SAR QSAR Environ Res; 2012 Jan; 23(1-2):37-57. PubMed ID: 22014213 [TBL] [Abstract][Full Text] [Related]
3. The OECD QSAR Toolbox Starts Its Second Decade. Schultz TW; Diderich R; Kuseva CD; Mekenyan OG Methods Mol Biol; 2018; 1800():55-77. PubMed ID: 29934887 [TBL] [Abstract][Full Text] [Related]
4. QSAR modeling and prediction of the endocrine-disrupting potencies of brominated flame retardants. Papa E; Kovarich S; Gramatica P Chem Res Toxicol; 2010 May; 23(5):946-54. PubMed ID: 20408563 [TBL] [Abstract][Full Text] [Related]
6. Development of QSAR models for predicting the binding affinity of endocrine disrupting chemicals to eight fish estrogen receptor. He J; Peng T; Yang X; Liu H Ecotoxicol Environ Saf; 2018 Feb; 148():211-219. PubMed ID: 29055205 [TBL] [Abstract][Full Text] [Related]
7. The importance of molecular structures, endpoints' values, and predictivity parameters in QSAR research: QSAR analysis of a series of estrogen receptor binders. Li J; Gramatica P Mol Divers; 2010 Nov; 14(4):687-96. PubMed ID: 19921452 [TBL] [Abstract][Full Text] [Related]
8. Integration of in silico methods and computational systems biology to explore endocrine-disrupting chemical binding with nuclear hormone receptors. Ruiz P; Sack A; Wampole M; Bobst S; Vracko M Chemosphere; 2017 Jul; 178():99-109. PubMed ID: 28319747 [TBL] [Abstract][Full Text] [Related]
9. Pesticides as estrogen disruptors: QSAR for selective ERα and ERβ binding of pesticides. Agatonovic-Kustrin S; Alexander M; Morton DW; Turner JV Comb Chem High Throughput Screen; 2011 Feb; 14(2):85-92. PubMed ID: 20958252 [TBL] [Abstract][Full Text] [Related]
10. Deep learning driven QSAR model for environmental toxicology: Effects of endocrine disrupting chemicals on human health. Heo S; Safder U; Yoo C Environ Pollut; 2019 Oct; 253():29-38. PubMed ID: 31302400 [TBL] [Abstract][Full Text] [Related]
11. Comparing in vivo data and in silico predictions for acute effects assessment of biocidal active substances and metabolites for aquatic organisms. Blázquez M; Andreu-Sánchez O; Ranero I; Fernández-Cruz ML; Benfenati E Ecotoxicol Environ Saf; 2020 Dec; 205():111291. PubMed ID: 32956865 [TBL] [Abstract][Full Text] [Related]
12. Prediction of the endocrine disruption profile of pesticides. Devillers J; Bro E; Millot F SAR QSAR Environ Res; 2015; 26(10):831-52. PubMed ID: 26548639 [TBL] [Abstract][Full Text] [Related]
13. Development of a general baseline toxicity QSAR model for the fish embryo acute toxicity test. Klüver N; Vogs C; Altenburger R; Escher BI; Scholz S Chemosphere; 2016 Dec; 164():164-173. PubMed ID: 27588575 [TBL] [Abstract][Full Text] [Related]
14. Estrogen Receptor Binding Affinity of Food Contact Material Components Estimated by QSAR. Sosnovcová J; Rucki M; Bendová H Cent Eur J Public Health; 2016 Sep; 24(3):241-244. PubMed ID: 27743518 [TBL] [Abstract][Full Text] [Related]
15. Consensus QSAR modeling of toxicity of pharmaceuticals to different aquatic organisms: Ranking and prioritization of the DrugBank database compounds. Khan K; Benfenati E; Roy K Ecotoxicol Environ Saf; 2019 Jan; 168():287-297. PubMed ID: 30390527 [TBL] [Abstract][Full Text] [Related]
16. Quantitative Structure-Activity Relationships of Aquatic Narcosis: A Review. Adhikari C; Mishra BK Curr Comput Aided Drug Des; 2018; 14(1):7-28. PubMed ID: 28699497 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of the OECD QSAR toolbox automatic workflow for the prediction of the acute toxicity of organic chemicals to fathead minnow. Mombelli E; Pandard P Regul Toxicol Pharmacol; 2021 Jun; 122():104893. PubMed ID: 33587933 [TBL] [Abstract][Full Text] [Related]
18. Recent advances in the molecular modeling of estrogen receptor-mediated toxicity. Tsakovska I; Pajeva I; Alov P; Worth A Adv Protein Chem Struct Biol; 2011; 85():217-51. PubMed ID: 21920325 [TBL] [Abstract][Full Text] [Related]
19. Computational prediction models for assessing endocrine disrupting potential of chemicals. Sakkiah S; Guo W; Pan B; Kusko R; Tong W; Hong H J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2018; 36(4):192-218. PubMed ID: 30633647 [TBL] [Abstract][Full Text] [Related]
20. Imatinib: Major photocatalytic degradation pathways in aqueous media and the relative toxicity of its transformation products. Secrétan PH; Karoui M; Sadou Yayé H; Levi Y; Tortolano L; Solgadi A; Yagoubi N; Do B Sci Total Environ; 2019 Mar; 655():547-556. PubMed ID: 30476834 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]