These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 31524874)

  • 21. Quick and efficient quantitative predictions of androgen receptor binding affinity for screening Endocrine Disruptor Chemicals using 2D-QSAR and Chemical Read-Across.
    Banerjee A; De P; Kumar V; Kar S; Roy K
    Chemosphere; 2022 Dec; 309(Pt 1):136579. PubMed ID: 36174732
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Applications of in silico methods to analyze the toxicity and estrogen receptor-mediated properties of plant-derived phytochemicals.
    Kranthi Kumar K; Yugandhar P; Uma Devi B; Siva Kumar T; Savithramma N; Neeraja P
    Food Chem Toxicol; 2019 Mar; 125():361-369. PubMed ID: 30677443
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ecotoxicological characterisation and classification of existing chemicals. Examples from the ICCA HPV initiative and comparison with other existing chemicals.
    Licht O; Weyers A; Nagel R
    Environ Sci Pollut Res Int; 2004; 11(5):291-6. PubMed ID: 15506630
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prediction of Estrogenic Bioactivity of Environmental Chemical Metabolites.
    Pinto CL; Mansouri K; Judson R; Browne P
    Chem Res Toxicol; 2016 Sep; 29(9):1410-27. PubMed ID: 27509301
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Assessing the chemical-induced estrogenicity using in silico and in vitro methods.
    Goya-Jorge E; Amber M; Gozalbes R; Connolly L; Barigye SJ
    Environ Toxicol Pharmacol; 2021 Oct; 87():103688. PubMed ID: 34119701
    [TBL] [Abstract][Full Text] [Related]  

  • 26. SAR and QSAR modeling of endocrine disruptors.
    Devillers J; Marchand-Geneste N; Carpy A; Porcher JM
    SAR QSAR Environ Res; 2006 Aug; 17(4):393-412. PubMed ID: 16920661
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In Silico Predictions of Endocrine Disruptors Properties.
    Schneider M; Pons JL; Labesse G; Bourguet W
    Endocrinology; 2019 Nov; 160(11):2709-2716. PubMed ID: 31265055
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Endocrine-disrupting activity of per- and polyfluoroalkyl substances: Exploring combined approaches of ligand and structure based modeling.
    Kar S; Sepúlveda MS; Roy K; Leszczynski J
    Chemosphere; 2017 Oct; 184():514-523. PubMed ID: 28622647
    [TBL] [Abstract][Full Text] [Related]  

  • 29. QSAR models for reproductive toxicity and endocrine disruption activity.
    Novic M; Vracko M
    Molecules; 2010 Mar; 15(3):1987-99. PubMed ID: 20336027
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Assessment of prediction confidence and domain extrapolation of two structure-activity relationship models for predicting estrogen receptor binding activity.
    Tong W; Xie Q; Hong H; Shi L; Fang H; Perkins R
    Environ Health Perspect; 2004 Aug; 112(12):1249-54. PubMed ID: 15345371
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multispecies QSAR modeling for predicting the aquatic toxicity of diverse organic chemicals for regulatory toxicology.
    Singh KP; Gupta S; Kumar A; Mohan D
    Chem Res Toxicol; 2014 May; 27(5):741-53. PubMed ID: 24738471
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Binary classification models for endocrine disrupter effects mediated through the estrogen receptor.
    Roncaglioni A; Piclin N; Pintore M; Benfenati E
    SAR QSAR Environ Res; 2008; 19(7-8):697-733. PubMed ID: 19061085
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In Silico Study of In Vitro GPCR Assays by QSAR Modeling.
    Mansouri K; Judson RS
    Methods Mol Biol; 2016; 1425():361-81. PubMed ID: 27311474
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Endocrine disruptors in marine organisms: approaches and perspectives.
    Porte C; Janer G; Lorusso LC; Ortiz-Zarragoitia M; Cajaraville MP; Fossi MC; Canesi L
    Comp Biochem Physiol C Toxicol Pharmacol; 2006 Jul; 143(3):303-15. PubMed ID: 16723279
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The applications of machine learning algorithms in the modeling of estrogen-like chemicals.
    Liu H; Yao X; Gramatica P
    Comb Chem High Throughput Screen; 2009 Jun; 12(5):490-6. PubMed ID: 19519328
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Prediction of rodent carcinogenic potential of naturally occurring chemicals in the human diet using high-throughput QSAR predictive modeling.
    Valerio LG; Arvidson KB; Chanderbhan RF; Contrera JF
    Toxicol Appl Pharmacol; 2007 Jul; 222(1):1-16. PubMed ID: 17482223
    [TBL] [Abstract][Full Text] [Related]  

  • 37. ANN and Bayesian classification models for virtual screening of endocrine-disrupting chemicals.
    Nowicki P; Klos J; Kokot Z
    Comb Chem High Throughput Screen; 2014; 17(5):407-16. PubMed ID: 24547995
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In silico bioavailability triggers applied to direct and indirect thyroid hormone disruptors.
    Kühne R; Hilscherová K; Smutna M; Leßmöllmann F; Schüürmann G
    Chemosphere; 2024 Jan; 348():140611. PubMed ID: 37972869
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Machine learning models for predicting endocrine disruption potential of environmental chemicals.
    Chierici M; Giulini M; Bussola N; Jurman G; Furlanello C
    J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2018; 36(4):237-251. PubMed ID: 30628533
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Integration of in silico approaches to determination of endocrine-disrupting perfluorinated chemicals binding potency with steroidogenic acute regulatory protein.
    Kranthi Kumar K; Uma Devi B; Neeraja P
    Biochem Biophys Res Commun; 2017 Sep; 491(4):1007-1014. PubMed ID: 28780348
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.