These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 31525029)
1. Large-Scale Antitumor Screening Based on Heterotypic 3D Tumors Using an Integrated Microfluidic Platform. Liu W; Sun M; Han K; Wang J Anal Chem; 2019 Nov; 91(21):13601-13610. PubMed ID: 31525029 [TBL] [Abstract][Full Text] [Related]
2. Heterotypic 3D tumor culture in a reusable platform using pneumatic microfluidics. Liu W; Tian C; Yan M; Zhao L; Ma C; Li T; Xu J; Wang J Lab Chip; 2016 Oct; 16(21):4106-4120. PubMed ID: 27714003 [TBL] [Abstract][Full Text] [Related]
3. Parallel and large-scale antitumor investigation using stable chemical gradient and heterotypic three-dimensional tumor coculture in a multi-layered microfluidic device. Liu W; Hu R; Han K; Sun M; Liu D; Zhang J; Wang J Biotechnol J; 2021 Oct; 16(10):e2000655. PubMed ID: 34218506 [TBL] [Abstract][Full Text] [Related]
4. Controllable organization and high throughput production of recoverable 3D tumors using pneumatic microfluidics. Liu W; Wang JC; Wang J Lab Chip; 2015 Feb; 15(4):1195-204. PubMed ID: 25571856 [TBL] [Abstract][Full Text] [Related]
5. Monitoring tumor response to anticancer drugs using stable three-dimensional culture in a recyclable microfluidic platform. Liu W; Xu J; Li T; Zhao L; Ma C; Shen S; Wang J Anal Chem; 2015 Oct; 87(19):9752-60. PubMed ID: 26337449 [TBL] [Abstract][Full Text] [Related]
6. An integrated microfluidic 3D tumor system for parallel and high-throughput chemotherapy evaluation. Liu W; Liu D; Hu R; Huang Z; Sun M; Han K Analyst; 2020 Oct; 145(20):6447-6455. PubMed ID: 33043931 [TBL] [Abstract][Full Text] [Related]
7. Validating antimetastatic effects of natural products in an engineered microfluidic platform mimicking tumor microenvironment. Niu Y; Bai J; Kamm RD; Wang Y; Wang C Mol Pharm; 2014 Jul; 11(7):2022-9. PubMed ID: 24533867 [TBL] [Abstract][Full Text] [Related]
8. Tumor Microenvironment Based on Extracellular Matrix Hydrogels for On-Chip Drug Screening. Liu X; Cheng J; Zhao Y Biosensors (Basel); 2024 Sep; 14(9):. PubMed ID: 39329804 [TBL] [Abstract][Full Text] [Related]
9. A 3D Heterotypic Multicellular Tumor Spheroid Assay Platform to Discriminate Drug Effects on Stroma versus Cancer Cells. Weydert Z; Lal-Nag M; Mathews-Greiner L; Thiel C; Cordes H; Küpfer L; Guye P; Kelm JM; Ferrer M SLAS Discov; 2020 Mar; 25(3):265-276. PubMed ID: 31658853 [TBL] [Abstract][Full Text] [Related]
10. Automated microfluidic platform for dynamic and combinatorial drug screening of tumor organoids. Schuster B; Junkin M; Kashaf SS; Romero-Calvo I; Kirby K; Matthews J; Weber CR; Rzhetsky A; White KP; Tay S Nat Commun; 2020 Oct; 11(1):5271. PubMed ID: 33077832 [TBL] [Abstract][Full Text] [Related]
11. High-Throughput 3D Tumor Culture in a Recyclable Microfluidic Platform. Liu W; Wang J Methods Mol Biol; 2017; 1612():293-301. PubMed ID: 28634952 [TBL] [Abstract][Full Text] [Related]
12. High-throughput screening with nanoimprinting 3D culture for efficient drug development by mimicking the tumor environment. Yoshii Y; Furukawa T; Waki A; Okuyama H; Inoue M; Itoh M; Zhang MR; Wakizaka H; Sogawa C; Kiyono Y; Yoshii H; Fujibayashi Y; Saga T Biomaterials; 2015 May; 51():278-289. PubMed ID: 25771018 [TBL] [Abstract][Full Text] [Related]
13. Three dimensional microfluidic cell arrays for ex vivo drug screening with mimicked vascular flow. Dereli-Korkut Z; Akaydin HD; Ahmed AH; Jiang X; Wang S Anal Chem; 2014 Mar; 86(6):2997-3004. PubMed ID: 24568664 [TBL] [Abstract][Full Text] [Related]
14. Identification of drugs as single agents or in combination to prevent carcinoma dissemination in a microfluidic 3D environment. Bai J; Tu TY; Kim C; Thiery JP; Kamm RD Oncotarget; 2015 Nov; 6(34):36603-14. PubMed ID: 26474384 [TBL] [Abstract][Full Text] [Related]
15. In-air production of 3D co-culture tumor spheroid hydrogels for expedited drug screening. Antunes J; Gaspar VM; Ferreira L; Monteiro M; Henrique R; Jerónimo C; Mano JF Acta Biomater; 2019 Aug; 94():392-409. PubMed ID: 31200118 [TBL] [Abstract][Full Text] [Related]
16. Analysis of Cancer Cell Invasion and Anti-metastatic Drug Screening Using Hydrogel Micro-chamber Array (HMCA)-based Plates. Ravid-Hermesh O; Zurgil N; Shafran Y; Afrimzon E; Sobolev M; Hakuk Y; Bar-On Eizig Z; Deutsch M J Vis Exp; 2018 Oct; (140):. PubMed ID: 30417872 [TBL] [Abstract][Full Text] [Related]
17. Facile construction of a 3D tumor model with multiple biomimetic characteristics using a micropatterned chip for large-scale chemotherapy investigation. Sun M; Zhang J; Fu W; Xuanyuan T; Liu W Lab Chip; 2023 May; 23(9):2161-2174. PubMed ID: 36943157 [TBL] [Abstract][Full Text] [Related]
18. Microfluidics Enabled Bottom-Up Engineering of 3D Vascularized Tumor for Drug Discovery. Agarwal P; Wang H; Sun M; Xu J; Zhao S; Liu Z; Gooch KJ; Zhao Y; Lu X; He X ACS Nano; 2017 Jul; 11(7):6691-6702. PubMed ID: 28614653 [TBL] [Abstract][Full Text] [Related]
19. Microengineered 3D Tumor Models for Anti-Cancer Drug Discovery in Female-Related Cancers. Amirghasemi F; Adjei-Sowah E; Pockaj BA; Nikkhah M Ann Biomed Eng; 2021 Aug; 49(8):1943-1972. PubMed ID: 33403451 [TBL] [Abstract][Full Text] [Related]
20. Translation of a tumor microenvironment mimicking 3D tumor growth co-culture assay platform to high-content screening. Krausz E; de Hoogt R; Gustin E; Cornelissen F; Grand-Perret T; Janssen L; Vloemans N; Wuyts D; Frans S; Axel A; Peeters PJ; Hall B; Cik M J Biomol Screen; 2013 Jan; 18(1):54-66. PubMed ID: 22923784 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]