These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
411 related articles for article (PubMed ID: 31525217)
1. Transport oil product consumption and GHG emission reduction potential in China: An electric vehicle-based scenario analysis. Zheng Y; Li S; Xu S PLoS One; 2019; 14(9):e0222448. PubMed ID: 31525217 [TBL] [Abstract][Full Text] [Related]
2. Well-to-wheel greenhouse gas emissions of electric versus combustion vehicles from 2018 to 2030 in the US. Challa R; Kamath D; Anctil A J Environ Manage; 2022 Apr; 308():114592. PubMed ID: 35121453 [TBL] [Abstract][Full Text] [Related]
3. Greenhouse gas emission benefits of adopting new energy vehicles in Suzhou City, China: A case study. Da C; Gu X; Lu C; Hua R; Chang X; Cheng Y; Qian F; Wang Y Environ Sci Pollut Res Int; 2022 Oct; 29(50):76286-76297. PubMed ID: 35668254 [TBL] [Abstract][Full Text] [Related]
4. Current and future greenhouse gas emissions associated with electricity generation in China: implications for electric vehicles. Shen W; Han W; Wallington TJ Environ Sci Technol; 2014 Jun; 48(12):7069-75. PubMed ID: 24853334 [TBL] [Abstract][Full Text] [Related]
5. Which type of electric vehicle is worth promoting mostly in the context of carbon peaking and carbon neutrality? A case study for a metropolis in China. Yu Y; Xu H; Cheng J; Wan F; Ju L; Liu Q; Liu J Sci Total Environ; 2022 Sep; 837():155626. PubMed ID: 35504393 [TBL] [Abstract][Full Text] [Related]
6. Provincial Greenhouse Gas Emissions of Gasoline and Plug-in Electric Vehicles in China: Comparison from the Consumption-Based Electricity Perspective. Gan Y; Lu Z; He X; Hao C; Wang Y; Cai H; Wang M; Elgowainy A; Przesmitzki S; Bouchard J Environ Sci Technol; 2021 May; 55(10):6944-6956. PubMed ID: 33945267 [TBL] [Abstract][Full Text] [Related]
7. Impact assessment of crude oil mix, electricity generation mix, and vehicle technology on road freight emission reduction in China. Jiang Z; Yan R; Gong Z; Guan G Environ Sci Pollut Res Int; 2023 Feb; 30(10):27763-27781. PubMed ID: 36385332 [TBL] [Abstract][Full Text] [Related]
8. Marginal Greenhouse Gas Emissions of Ontario's Electricity System and the Implications of Electric Vehicle Charging. Gai Y; Wang A; Pereira L; Hatzopoulou M; Posen ID Environ Sci Technol; 2019 Jul; 53(13):7903-7912. PubMed ID: 31244061 [TBL] [Abstract][Full Text] [Related]
9. Private versus Shared, Automated Electric Vehicles for U.S. Personal Mobility: Energy Use, Greenhouse Gas Emissions, Grid Integration, and Cost Impacts. Sheppard CJR; Jenn AT; Greenblatt JB; Bauer GS; Gerke BF Environ Sci Technol; 2021 Mar; 55(5):3229-3239. PubMed ID: 33566604 [TBL] [Abstract][Full Text] [Related]
10. Climate and environmental effects of electric vehicles versus compressed natural gas vehicles in China: a life-cycle analysis at provincial level. Huo H; Zhang Q; Liu F; He K Environ Sci Technol; 2013 Feb; 47(3):1711-8. PubMed ID: 23276251 [TBL] [Abstract][Full Text] [Related]
11. Environmental implication of electric vehicles in China. Huo H; Zhang Q; Wang MQ; Streets DG; He K Environ Sci Technol; 2010 Jul; 44(13):4856-61. PubMed ID: 20496930 [TBL] [Abstract][Full Text] [Related]
12. Assessing the European Electric-Mobility Transition: Emissions from Electric Vehicle Manufacturing and Use in Relation to the EU Greenhouse Gas Emission Targets. Tang C; Tukker A; Sprecher B; Mogollón JM Environ Sci Technol; 2023 Jan; 57(1):44-52. PubMed ID: 36574507 [TBL] [Abstract][Full Text] [Related]
13. Electrifying passenger road transport in India requires near-term electricity grid decarbonisation. Abdul-Manan AFN; Gordillo Zavaleta V; Agarwal AK; Kalghatgi G; Amer AA Nat Commun; 2022 Apr; 13(1):2095. PubMed ID: 35440110 [TBL] [Abstract][Full Text] [Related]
14. China Electricity Generation Greenhouse Gas Emission Intensity in 2030: Implications for Electric Vehicles. Shen W; Han W; Wallington TJ; Winkler SL Environ Sci Technol; 2019 May; 53(10):6063-6072. PubMed ID: 31021614 [TBL] [Abstract][Full Text] [Related]
15. The Role of Industrial Parks in Mitigating Greenhouse Gas Emissions from China. Guo Y; Tian J; Zang N; Gao Y; Chen L Environ Sci Technol; 2018 Jul; 52(14):7754-7762. PubMed ID: 29902379 [TBL] [Abstract][Full Text] [Related]
16. [Research on carbon reduction potential of electric vehicles for low-carbon transportation and its influencing factors]. Shi XQ; Li XN; Yang JX Huan Jing Ke Xue; 2013 Jan; 34(1):385-94. PubMed ID: 23487966 [TBL] [Abstract][Full Text] [Related]
17. Coordinated EV adoption: double-digit reductions in emissions and fuel use for $40/vehicle-year. Choi DG; Kreikebaum F; Thomas VM; Divan D Environ Sci Technol; 2013 Sep; 47(18):10703-7. PubMed ID: 23875888 [TBL] [Abstract][Full Text] [Related]
18. Electricity carbon intensity in European Member States: Impacts on GHG emissions of electric vehicles. Moro A; Lonza L Transp Res D Transp Environ; 2018 Oct; 64():5-14. PubMed ID: 30740029 [TBL] [Abstract][Full Text] [Related]
19. Life cycle assessment of greenhouse gas emissions of typical sewage sludge incineration treatment route based on two case studies in China. Yang H; Guo Y; Fang N; Dong B Environ Res; 2023 Aug; 231(Pt 1):115959. PubMed ID: 37105292 [TBL] [Abstract][Full Text] [Related]
20. The inharmonious mechanism of CO Wang L; Yu Y; Huang K; Zhang Z; Li X J Environ Manage; 2020 Nov; 274():111236. PubMed ID: 32827870 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]