These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 31525352)

  • 1. Testing the thermal limits: Non-linear reaction norms drive disparate thermal acclimation responses in Drosophila melanogaster.
    Salachan PV; Burgaud H; Sørensen JG
    J Insect Physiol; 2019 Oct; 118():103946. PubMed ID: 31525352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Drawing the line: Linear or non-linear reaction norms in response to adult acclimation on lower thermal limits.
    Sørensen JG; Winther ML; Salachan PV; MacLean HJ
    J Insect Physiol; 2020 Jul; 124():104075. PubMed ID: 32540466
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How important is thermal history? Evidence for lasting effects of developmental temperature on upper thermal limits in
    Kellermann V; van Heerwaarden B; Sgrò CM
    Proc Biol Sci; 2017 May; 284(1855):. PubMed ID: 28539515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How much starvation, desiccation and oxygen depletion can Drosophila melanogaster tolerate before its upper thermal limits are affected?
    Manenti T; Cunha TR; Sørensen JG; Loeschcke V
    J Insect Physiol; 2018; 111():1-7. PubMed ID: 30273554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ecologically relevant measures of tolerance to potentially lethal temperatures.
    Terblanche JS; Hoffmann AA; Mitchell KA; Rako L; le Roux PC; Chown SL
    J Exp Biol; 2011 Nov; 214(Pt 22):3713-25. PubMed ID: 22031735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions between rates of temperature change and acclimation affect latitudinal patterns of warming tolerance.
    Allen JL; Chown SL; Janion-Scheepers C; Clusella-Trullas S
    Conserv Physiol; 2016; 4(1):cow053. PubMed ID: 27933165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acclimation capacity to global warming of amphibians and freshwater fishes: Drivers, patterns, and data limitations.
    Ruthsatz K; Dahlke F; Alter K; Wohlrab S; Eterovick PC; Lyra ML; Gippner S; Cooke SJ; Peck MA
    Glob Chang Biol; 2024 May; 30(5):e17318. PubMed ID: 38771091
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flies on the rise: acclimation effect on mitochondrial oxidation capacity at normal and high temperatures in Drosophila melanogaster.
    Blanchard A; Aminot M; Gould N; Léger A; Pichaud N
    J Exp Biol; 2024 Jun; 227(12):. PubMed ID: 38841909
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Critical thermal limits affected differently by developmental and adult thermal fluctuations.
    Salachan PV; Sørensen JG
    J Exp Biol; 2017 Dec; 220(Pt 23):4471-4478. PubMed ID: 28982965
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Upper thermal tolerance plasticity in tropical amphibian species from contrasting habitats: implications for warming impact prediction.
    Simon MN; Ribeiro PL; Navas CA
    J Therm Biol; 2015 Feb; 48():36-44. PubMed ID: 25660628
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of warming rate, acclimation temperature and ontogeny on the critical thermal maximum of temperate marine fish larvae.
    Moyano M; Candebat C; Ruhbaum Y; Álvarez-Fernández S; Claireaux G; Zambonino-Infante JL; Peck MA
    PLoS One; 2017; 12(7):e0179928. PubMed ID: 28749960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution and plasticity of thermal performance: an analysis of variation in thermal tolerance and fitness in 22 Drosophila species.
    MacLean HJ; Sørensen JG; Kristensen TN; Loeschcke V; Beedholm K; Kellermann V; Overgaard J
    Philos Trans R Soc Lond B Biol Sci; 2019 Aug; 374(1778):20180548. PubMed ID: 31203763
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reversibility of developmental heat and cold plasticity is asymmetric and has long-lasting consequences for adult thermal tolerance.
    Slotsbo S; Schou MF; Kristensen TN; Loeschcke V; Sørensen JG
    J Exp Biol; 2016 Sep; 219(Pt 17):2726-32. PubMed ID: 27353229
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolutionary capacity of upper thermal limits: beyond single trait assessments.
    Blackburn S; van Heerwaarden B; Kellermann V; Sgrò CM
    J Exp Biol; 2014 Jun; 217(Pt 11):1918-24. PubMed ID: 24625644
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ontogenetic thermal tolerance and performance of ectotherms at variable temperatures.
    Cavieres G; Bogdanovich JM; Bozinovic F
    J Evol Biol; 2016 Jul; 29(7):1462-8. PubMed ID: 27118598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature tolerance and oxygen consumption of two South American tetras, Paracheirodon innessi and Hyphessobrycon herbertaxelrodi.
    Cooper CJ; Mueller CA; Eme J
    J Therm Biol; 2019 Dec; 86():102434. PubMed ID: 31789229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strong Costs and Benefits of Winter Acclimatization in Drosophila melanogaster.
    Schou MF; Loeschcke V; Kristensen TN
    PLoS One; 2015; 10(6):e0130307. PubMed ID: 26075607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal tolerance and acclimation capacity in the European common frog (Rana temporaria) change throughout ontogeny.
    Ruthsatz K; Dausmann KH; Peck MA; Glos J
    J Exp Zool A Ecol Integr Physiol; 2022 Jun; 337(5):477-490. PubMed ID: 35226414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal fluctuations affect the transcriptome through mechanisms independent of average temperature.
    Sørensen JG; Schou MF; Kristensen TN; Loeschcke V
    Sci Rep; 2016 Aug; 6():30975. PubMed ID: 27487917
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolutionary and ecological patterns of thermal acclimation capacity in Drosophila: is it important for keeping up with climate change?
    Sørensen JG; Kristensen TN; Overgaard J
    Curr Opin Insect Sci; 2016 Oct; 17():98-104. PubMed ID: 27720081
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.