These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 31525399)

  • 21. Exploring the dark foldable proteome by considering hydrophobic amino acids topology.
    Bitard-Feildel T; Callebaut I
    Sci Rep; 2017 Jan; 7():41425. PubMed ID: 28134276
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Correlation between sequence hydrophobicity and surface-exposure pattern of database proteins.
    Moelbert S; Emberly E; Tang C
    Protein Sci; 2004 Mar; 13(3):752-62. PubMed ID: 14767075
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hydrophobic moments of protein structures: spatially profiling the distribution.
    Silverman BD
    Proc Natl Acad Sci U S A; 2001 Apr; 98(9):4996-5001. PubMed ID: 11309489
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sequence and structural analysis of cellular retinoic acid-binding proteins reveals a network of conserved hydrophobic interactions.
    Gunasekaran K; Hagler AT; Gierasch LM
    Proteins; 2004 Feb; 54(2):179-94. PubMed ID: 14696180
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantitative theory of hydrophobic effect as a driving force of protein structure.
    Perunov N; England JL
    Protein Sci; 2014 Apr; 23(4):387-99. PubMed ID: 24408023
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Importance of hydrophobic cluster formation through long-range contacts in the folding transition state of two-state proteins.
    Selvaraj S; Gromiha MM
    Proteins; 2004 Jun; 55(4):1023-35. PubMed ID: 15146499
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A hydrophobic spine stabilizes a surface-exposed α-helix according to analysis of the solvent-accessible surface area.
    Liou YF; Huang HL; Ho SY
    BMC Bioinformatics; 2016 Dec; 17(Suppl 19):503. PubMed ID: 28155647
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hydrophobic cluster analysis: procedures to derive structural and functional information from 2-D-representation of protein sequences.
    Lemesle-Varloot L; Henrissat B; Gaboriaud C; Bissery V; Morgat A; Mornon JP
    Biochimie; 1990 Aug; 72(8):555-74. PubMed ID: 2126461
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Side-chain clusters in protein structures and their role in protein folding.
    Heringa J; Argos P
    J Mol Biol; 1991 Jul; 220(1):151-71. PubMed ID: 2067014
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Protein-protein interfaces: architectures and interactions in protein-protein interfaces and in protein cores. Their similarities and differences.
    Tsai CJ; Lin SL; Wolfson HJ; Nussinov R
    Crit Rev Biochem Mol Biol; 1996 Apr; 31(2):127-52. PubMed ID: 8740525
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Important amino acid residues involved in folding and binding of protein-protein complexes.
    Kulandaisamy A; Lathi V; ViswaPoorani K; Yugandhar K; Gromiha MM
    Int J Biol Macromol; 2017 Jan; 94(Pt A):438-444. PubMed ID: 27765571
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Classification of amino acids based on statistical results of known structures and cooperativity of protein folding.
    Chen H; Zhou X; Ou-Yang ZC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jun; 65(6 Pt 1):061907. PubMed ID: 12188759
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An integrated approach to the analysis and modeling of protein sequences and structures. III. A comparative study of sequence conservation in protein structural families using multiple structural alignments.
    Yang AS; Honig B
    J Mol Biol; 2000 Aug; 301(3):691-711. PubMed ID: 10966778
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Automatic recognition of hydrophobic clusters and their correlation with protein folding units.
    Zehfus MH
    Protein Sci; 1995 Jun; 4(6):1188-202. PubMed ID: 7549883
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Contribution to the prediction of the fold code: application to immunoglobulin and flavodoxin cases.
    Banach M; Prudhomme N; Carpentier M; Duprat E; Papandreou N; Kalinowska B; Chomilier J; Roterman I
    PLoS One; 2015; 10(4):e0125098. PubMed ID: 25915049
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cation-π, amino-π, π-π, and H-bond interactions stabilize antigen-antibody interfaces.
    Dalkas GA; Teheux F; Kwasigroch JM; Rooman M
    Proteins; 2014 Sep; 82(9):1734-46. PubMed ID: 24488795
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Clusters of isoleucine, leucine, and valine side chains define cores of stability in high-energy states of globular proteins: Sequence determinants of structure and stability.
    Kathuria SV; Chan YH; Nobrega RP; Özen A; Matthews CR
    Protein Sci; 2016 Mar; 25(3):662-75. PubMed ID: 26660714
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Frequencies of amino acid strings in globular protein sequences indicate suppression of blocks of consecutive hydrophobic residues.
    Schwartz R; Istrail S; King J
    Protein Sci; 2001 May; 10(5):1023-31. PubMed ID: 11316883
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural motifs in which β-strands are clipped together with the П-like module.
    Efimov AV
    Proteins; 2017 Oct; 85(10):1925-1930. PubMed ID: 28677205
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Globular protein backbone conformational disorder in crystal structures.
    Carugo O
    Amino Acids; 2019 Mar; 51(3):475-481. PubMed ID: 30515566
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.