BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

997 related articles for article (PubMed ID: 31525468)

  • 1. Development of an unsupervised machine learning algorithm for the prognostication of walking ability in spinal cord injury patients.
    DeVries Z; Hoda M; Rivers CS; Maher A; Wai E; Moravek D; Stratton A; Kingwell S; Fallah N; Paquet J; Phan P;
    Spine J; 2020 Feb; 20(2):213-224. PubMed ID: 31525468
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A simplified clinical prediction rule for prognosticating independent walking after spinal cord injury: a prospective study from a Canadian multicenter spinal cord injury registry.
    Hicks KE; Zhao Y; Fallah N; Rivers CS; Noonan VK; Plashkes T; Wai EK; Roffey DM; Tsai EC; Paquet J; Attabib N; Marion T; Ahn H; Phan P;
    Spine J; 2017 Oct; 17(10):1383-1392. PubMed ID: 28716636
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highlighting discrepancies in walking prediction accuracy for patients with traumatic spinal cord injury: an evaluation of validated prediction models using a Canadian Multicenter Spinal Cord Injury Registry.
    Phan P; Budhram B; Zhang Q; Rivers CS; Noonan VK; Plashkes T; Wai EK; Paquet J; Roffey DM; Tsai E; Fallah N
    Spine J; 2019 Apr; 19(4):703-710. PubMed ID: 30179672
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of age and injury severity on clinical prediction rules for ambulation among individuals with spinal cord injury.
    Engel-Haber E; Zeilig G; Haber S; Worobey L; Kirshblum S
    Spine J; 2020 Oct; 20(10):1666-1675. PubMed ID: 32502654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A clinical prediction rule for ambulation outcomes after traumatic spinal cord injury: a longitudinal cohort study.
    van Middendorp JJ; Hosman AJ; Donders AR; Pouw MH; Ditunno JF; Curt A; Geurts AC; Van de Meent H;
    Lancet; 2011 Mar; 377(9770):1004-10. PubMed ID: 21377202
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of Age Alone, and Age Combined With Pinprick, on Recovery of Walking Function in Motor Complete, Sensory Incomplete Spinal Cord Injury.
    Oleson CV; Marino RJ; Leiby BE; Ditunno JF
    Arch Phys Med Rehabil; 2016 Oct; 97(10):1635-41. PubMed ID: 26898390
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using a national surgical database to predict complications following posterior lumbar surgery and comparing the area under the curve and F1-score for the assessment of prognostic capability.
    DeVries Z; Locke E; Hoda M; Moravek D; Phan K; Stratton A; Kingwell S; Wai EK; Phan P
    Spine J; 2021 Jul; 21(7):1135-1142. PubMed ID: 33601012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Can the acute magnetic resonance imaging features reflect neurologic prognosis in patients with cervical spinal cord injury?
    Matsushita A; Maeda T; Mori E; Yuge I; Kawano O; Ueta T; Shiba K
    Spine J; 2017 Sep; 17(9):1319-1324. PubMed ID: 28501580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Defining age-related differences in outcome after traumatic spinal cord injury: analysis of a combined, multicenter dataset.
    Wilson JR; Davis AM; Kulkarni AV; Kiss A; Frankowski RF; Grossman RG; Fehlings MG
    Spine J; 2014 Jul; 14(7):1192-8. PubMed ID: 24210580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Early predictors of developing problematic spasticity following traumatic spinal cord injury: A prospective cohort study.
    Mills PB; Holtz KA; Szefer E; Noonan VK; Kwon BK
    J Spinal Cord Med; 2020 May; 43(3):315-330. PubMed ID: 30299227
    [No Abstract]   [Full Text] [Related]  

  • 11. Clinical prediction model for acute inpatient complications after traumatic cervical spinal cord injury: a subanalysis from the Surgical Timing in Acute Spinal Cord Injury Study.
    Wilson JR; Arnold PM; Singh A; Kalsi-Ryan S; Fehlings MG
    J Neurosurg Spine; 2012 Sep; 17(1 Suppl):46-51. PubMed ID: 22985370
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and validation of an ensemble machine learning framework for detection of all-cause advanced hepatic fibrosis: a retrospective cohort study.
    Sarvestany SS; Kwong JC; Azhie A; Dong V; Cerocchi O; Ali AF; Karnam RS; Kuriry H; Shengir M; Candido E; Duchen R; Sebastiani G; Patel K; Goldenberg A; Bhat M
    Lancet Digit Health; 2022 Mar; 4(3):e188-e199. PubMed ID: 35216753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activity-based therapy for recovery of walking in individuals with chronic spinal cord injury: results from a randomized clinical trial.
    Jones ML; Evans N; Tefertiller C; Backus D; Sweatman M; Tansey K; Morrison S
    Arch Phys Med Rehabil; 2014 Dec; 95(12):2239-46.e2. PubMed ID: 25102384
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Early Clinical Prediction of Independent Outdoor Functional Walking Capacity in a Prospective Cohort of Traumatic Spinal Cord Injury Patients.
    Jean S; Mac-Thiong JM; Jean MC; Dionne A; BĂ©gin J; Richard-Denis A
    Am J Phys Med Rehabil; 2021 Nov; 100(11):1034-1041. PubMed ID: 34673705
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Patterns of Sacral Sparing Components on Neurologic Recovery in Newly Injured Persons With Traumatic Spinal Cord Injury.
    Kirshblum SC; Botticello AL; Dyson-Hudson TA; Byrne R; Marino RJ; Lammertse DP
    Arch Phys Med Rehabil; 2016 Oct; 97(10):1647-55. PubMed ID: 26971670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Does the Presence of Missing Data Affect the Performance of the SORG Machine-learning Algorithm for Patients With Spinal Metastasis? Development of an Internet Application Algorithm.
    Huang CC; Peng KP; Hsieh HC; Groot OQ; Yen HK; Tsai CC; Karhade AV; Lin YP; Kao YT; Yang JJ; Dai SH; Huang CC; Chen CW; Yen MH; Xiao FR; Lin WH; Verlaan JJ; Schwab JH; Hsu FM; Wong T; Yang RS; Yang SH; Hu MH
    Clin Orthop Relat Res; 2023 Jun; 482(1):143-57. PubMed ID: 37306629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using the Standing and Walking Assessment Tool at Discharge Predicts Community Outdoor Walking Capacity in Persons With Traumatic Spinal Cord Injury.
    Hong HA; Walden K; Laskin JJ; Wang D; Kurban D; Cheng CL; Guilbault L; Dagley E; Wong C; McCullum S; Gagnon DH; Lemay JF; Noonan VK; Musselman KE;
    Phys Ther; 2023 Nov; 103(11):. PubMed ID: 37561412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a machine learning algorithm for predicting in-hospital and 1-year mortality after traumatic spinal cord injury.
    Fallah N; Noonan VK; Waheed Z; Rivers CS; Plashkes T; Bedi M; Etminan M; Thorogood NP; Ailon T; Chan E; Dea N; Fisher C; Charest-Morin R; Paquette S; Park S; Street JT; Kwon BK; Dvorak MF
    Spine J; 2022 Feb; 22(2):329-336. PubMed ID: 34419627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predictors of neurologic recovery in acute central cervical cord injury with only upper extremity impairment.
    Ishida Y; Tominaga T
    Spine (Phila Pa 1976); 2002 Aug; 27(15):1652-8; discussion 1658. PubMed ID: 12163727
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine Learning-Based Clinical Prediction Models for Acute Ischemic Stroke Based on Serum Xanthine Oxidase Levels.
    Chen X; Zeng Q; Tao L; Yuan J; Hang J; Lu G; Shao J; Li Y; Yu H
    World Neurosurg; 2024 Apr; 184():e695-e707. PubMed ID: 38340801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 50.