These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1032 related articles for article (PubMed ID: 31525468)

  • 1. Development of an unsupervised machine learning algorithm for the prognostication of walking ability in spinal cord injury patients.
    DeVries Z; Hoda M; Rivers CS; Maher A; Wai E; Moravek D; Stratton A; Kingwell S; Fallah N; Paquet J; Phan P;
    Spine J; 2020 Feb; 20(2):213-224. PubMed ID: 31525468
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A simplified clinical prediction rule for prognosticating independent walking after spinal cord injury: a prospective study from a Canadian multicenter spinal cord injury registry.
    Hicks KE; Zhao Y; Fallah N; Rivers CS; Noonan VK; Plashkes T; Wai EK; Roffey DM; Tsai EC; Paquet J; Attabib N; Marion T; Ahn H; Phan P;
    Spine J; 2017 Oct; 17(10):1383-1392. PubMed ID: 28716636
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highlighting discrepancies in walking prediction accuracy for patients with traumatic spinal cord injury: an evaluation of validated prediction models using a Canadian Multicenter Spinal Cord Injury Registry.
    Phan P; Budhram B; Zhang Q; Rivers CS; Noonan VK; Plashkes T; Wai EK; Paquet J; Roffey DM; Tsai E; Fallah N
    Spine J; 2019 Apr; 19(4):703-710. PubMed ID: 30179672
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of age and injury severity on clinical prediction rules for ambulation among individuals with spinal cord injury.
    Engel-Haber E; Zeilig G; Haber S; Worobey L; Kirshblum S
    Spine J; 2020 Oct; 20(10):1666-1675. PubMed ID: 32502654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A clinical prediction rule for ambulation outcomes after traumatic spinal cord injury: a longitudinal cohort study.
    van Middendorp JJ; Hosman AJ; Donders AR; Pouw MH; Ditunno JF; Curt A; Geurts AC; Van de Meent H;
    Lancet; 2011 Mar; 377(9770):1004-10. PubMed ID: 21377202
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of Age Alone, and Age Combined With Pinprick, on Recovery of Walking Function in Motor Complete, Sensory Incomplete Spinal Cord Injury.
    Oleson CV; Marino RJ; Leiby BE; Ditunno JF
    Arch Phys Med Rehabil; 2016 Oct; 97(10):1635-41. PubMed ID: 26898390
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using a national surgical database to predict complications following posterior lumbar surgery and comparing the area under the curve and F1-score for the assessment of prognostic capability.
    DeVries Z; Locke E; Hoda M; Moravek D; Phan K; Stratton A; Kingwell S; Wai EK; Phan P
    Spine J; 2021 Jul; 21(7):1135-1142. PubMed ID: 33601012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of Two Modern Survival Prediction Tools, SORG-MLA and METSSS, in Patients With Symptomatic Long-bone Metastases Who Underwent Local Treatment With Surgery Followed by Radiotherapy and With Radiotherapy Alone.
    Lee CC; Chen CW; Yen HK; Lin YP; Lai CY; Wang JL; Groot OQ; Janssen SJ; Schwab JH; Hsu FM; Lin WH
    Clin Orthop Relat Res; 2024 Dec; 482(12):2193-2208. PubMed ID: 39051924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Can the acute magnetic resonance imaging features reflect neurologic prognosis in patients with cervical spinal cord injury?
    Matsushita A; Maeda T; Mori E; Yuge I; Kawano O; Ueta T; Shiba K
    Spine J; 2017 Sep; 17(9):1319-1324. PubMed ID: 28501580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Defining age-related differences in outcome after traumatic spinal cord injury: analysis of a combined, multicenter dataset.
    Wilson JR; Davis AM; Kulkarni AV; Kiss A; Frankowski RF; Grossman RG; Fehlings MG
    Spine J; 2014 Jul; 14(7):1192-8. PubMed ID: 24210580
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Does the Presence of Missing Data Affect the Performance of the SORG Machine-learning Algorithm for Patients With Spinal Metastasis? Development of an Internet Application Algorithm.
    Huang CC; Peng KP; Hsieh HC; Groot OQ; Yen HK; Tsai CC; Karhade AV; Lin YP; Kao YT; Yang JJ; Dai SH; Huang CC; Chen CW; Yen MH; Xiao FR; Lin WH; Verlaan JJ; Schwab JH; Hsu FM; Wong T; Yang RS; Yang SH; Hu MH
    Clin Orthop Relat Res; 2024 Jan; 482(1):143-157. PubMed ID: 37306629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of a novel nested ensemble algorithm in predicting motor function recovery in patients with traumatic cervical spinal cord injury.
    Wang Y; Zhang J; Yuan J; Li Q; Zhang S; Wang C; Wang H; Wang L; Zhang B; Wang C; Sun Y; Lu X
    Sci Rep; 2024 Jul; 14(1):17403. PubMed ID: 39075134
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Early predictors of developing problematic spasticity following traumatic spinal cord injury: A prospective cohort study.
    Mills PB; Holtz KA; Szefer E; Noonan VK; Kwon BK
    J Spinal Cord Med; 2020 May; 43(3):315-330. PubMed ID: 30299227
    [No Abstract]   [Full Text] [Related]  

  • 14. Clinical prediction model for acute inpatient complications after traumatic cervical spinal cord injury: a subanalysis from the Surgical Timing in Acute Spinal Cord Injury Study.
    Wilson JR; Arnold PM; Singh A; Kalsi-Ryan S; Fehlings MG
    J Neurosurg Spine; 2012 Sep; 17(1 Suppl):46-51. PubMed ID: 22985370
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and validation of an ensemble machine learning framework for detection of all-cause advanced hepatic fibrosis: a retrospective cohort study.
    Sarvestany SS; Kwong JC; Azhie A; Dong V; Cerocchi O; Ali AF; Karnam RS; Kuriry H; Shengir M; Candido E; Duchen R; Sebastiani G; Patel K; Goldenberg A; Bhat M
    Lancet Digit Health; 2022 Mar; 4(3):e188-e199. PubMed ID: 35216753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activity-based therapy for recovery of walking in individuals with chronic spinal cord injury: results from a randomized clinical trial.
    Jones ML; Evans N; Tefertiller C; Backus D; Sweatman M; Tansey K; Morrison S
    Arch Phys Med Rehabil; 2014 Dec; 95(12):2239-46.e2. PubMed ID: 25102384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Early Clinical Prediction of Independent Outdoor Functional Walking Capacity in a Prospective Cohort of Traumatic Spinal Cord Injury Patients.
    Jean S; Mac-Thiong JM; Jean MC; Dionne A; Bégin J; Richard-Denis A
    Am J Phys Med Rehabil; 2021 Nov; 100(11):1034-1041. PubMed ID: 34673705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Patterns of Sacral Sparing Components on Neurologic Recovery in Newly Injured Persons With Traumatic Spinal Cord Injury.
    Kirshblum SC; Botticello AL; Dyson-Hudson TA; Byrne R; Marino RJ; Lammertse DP
    Arch Phys Med Rehabil; 2016 Oct; 97(10):1647-55. PubMed ID: 26971670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using the Standing and Walking Assessment Tool at Discharge Predicts Community Outdoor Walking Capacity in Persons With Traumatic Spinal Cord Injury.
    Hong HA; Walden K; Laskin JJ; Wang D; Kurban D; Cheng CL; Guilbault L; Dagley E; Wong C; McCullum S; Gagnon DH; Lemay JF; Noonan VK; Musselman KE;
    Phys Ther; 2023 Nov; 103(11):. PubMed ID: 37561412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a machine learning algorithm for predicting in-hospital and 1-year mortality after traumatic spinal cord injury.
    Fallah N; Noonan VK; Waheed Z; Rivers CS; Plashkes T; Bedi M; Etminan M; Thorogood NP; Ailon T; Chan E; Dea N; Fisher C; Charest-Morin R; Paquette S; Park S; Street JT; Kwon BK; Dvorak MF
    Spine J; 2022 Feb; 22(2):329-336. PubMed ID: 34419627
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 52.