These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 31525473)

  • 1. Genome engineering of E. coli for improved styrene production.
    Liang L; Liu R; Foster KEO; AlakshChoudhury ; Cook S; Cameron JC; Srubar WV; Gill RT
    Metab Eng; 2020 Jan; 57():74-84. PubMed ID: 31525473
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced production of styrene by engineered Escherichia coli and in situ product recovery (ISPR) with an organic solvent.
    Lee K; Bang HB; Lee YH; Jeong KJ
    Microb Cell Fact; 2019 May; 18(1):79. PubMed ID: 31053078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expanding Upon Styrene Biosynthesis to Engineer a Novel Route to 2-Phenylethanol.
    Machas MS; McKenna R; Nielsen DR
    Biotechnol J; 2017 Oct; 12(10):. PubMed ID: 28799719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-omic based production strain improvement (MOBpsi) for bio-manufacturing of toxic chemicals.
    Webb JP; Paiva AC; Rossoni L; Alstrom-Moore A; Springthorpe V; Vaud S; Yeh V; Minde DP; Langer S; Walker H; Hounslow A; Nielsen DR; Larson T; Lilley K; Stephens G; Thomas GH; Bonev BB; Kelly DJ; Conradie A; Green J
    Metab Eng; 2022 Jul; 72():133-149. PubMed ID: 35289291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production host selection for asymmetric styrene epoxidation: Escherichia coli vs. solvent-tolerant Pseudomonas.
    Kuhn D; Bühler B; Schmid A
    J Ind Microbiol Biotechnol; 2012 Aug; 39(8):1125-33. PubMed ID: 22526330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of the two-component regulator StyS/StyR enhanced transcription of the styrene monooxygenase gene styAB and indigo biosynthesis in Escherichia coli.
    Yin S; Li Y; Hou J
    Enzyme Microb Technol; 2024 Mar; 174():110381. PubMed ID: 38134734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromosome engineering of Escherichia coli for constitutive production of salvianic acid A.
    Zhou L; Ding Q; Jiang GZ; Liu ZN; Wang HY; Zhao GR
    Microb Cell Fact; 2017 May; 16(1):84. PubMed ID: 28511681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic engineering of Escherichia coli for the production of phenylpyruvate derivatives.
    Liu SP; Zhang L; Mao J; Ding ZY; Shi GY
    Metab Eng; 2015 Nov; 32():55-65. PubMed ID: 26386181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell-free styrene biosynthesis at high titers.
    Grubbe WS; Rasor BJ; Krüger A; Jewett MC; Karim AS
    Metab Eng; 2020 Sep; 61():89-95. PubMed ID: 32502620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbial Synthesis of Myrcene by Metabolically Engineered Escherichia coli.
    Kim EM; Eom JH; Um Y; Kim Y; Woo HM
    J Agric Food Chem; 2015 May; 63(18):4606-12. PubMed ID: 25909988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modular pathway engineering for resveratrol and piceatannol production in engineered Escherichia coli.
    Shrestha A; Pandey RP; Pokhrel AR; Dhakal D; Chu LL; Sohng JK
    Appl Microbiol Biotechnol; 2018 Nov; 102(22):9691-9706. PubMed ID: 30178203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-culture engineering for microbial biosynthesis of 3-amino-benzoic acid in Escherichia coli.
    Zhang H; Stephanopoulos G
    Biotechnol J; 2016 Jul; 11(7):981-7. PubMed ID: 27168529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic engineering for efficient supply of acetyl-CoA from different carbon sources in Escherichia coli.
    Zhang S; Yang W; Chen H; Liu B; Lin B; Tao Y
    Microb Cell Fact; 2019 Aug; 18(1):130. PubMed ID: 31387584
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulating the Precursor and Terpene Synthase Supply for the Whole-Cell Biocatalytic Production of the Sesquiterpene (+)-Zizaene in a Pathway Engineered
    Aguilar F; Scheper T; Beutel S
    Genes (Basel); 2019 Jun; 10(6):. PubMed ID: 31238595
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Technoeconomic evaluation of bio-based styrene production by engineered Escherichia coli.
    Claypool JT; Raman DR; Jarboe LR; Nielsen DR
    J Ind Microbiol Biotechnol; 2014 Aug; 41(8):1211-6. PubMed ID: 24939174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. De novo production of benzyl glucosinolate in Escherichia coli.
    Petersen A; Crocoll C; Halkier BA
    Metab Eng; 2019 Jul; 54():24-34. PubMed ID: 30831267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Improving 3-dehydroshikimate production by metabolically engineered Escherichia coli].
    Yuan F; Chen W; Jia S; Wang Q
    Sheng Wu Gong Cheng Xue Bao; 2014 Oct; 30(10):1549-60. PubMed ID: 25726580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparing in situ removal strategies for improving styrene bioproduction.
    McKenna R; Moya L; McDaniel M; Nielsen DR
    Bioprocess Biosyst Eng; 2015 Jan; 38(1):165-74. PubMed ID: 25034182
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Manipulation of the precursor supply for high-level production of longifolene by metabolically engineered Escherichia coli.
    Cao Y; Zhang R; Liu W; Zhao G; Niu W; Guo J; Xian M; Liu H
    Sci Rep; 2019 Jan; 9(1):95. PubMed ID: 30643175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial Cell Factories à
    Egoburo DE; Diaz Peña R; Alvarez DS; Godoy MS; Mezzina MP; Pettinari MJ
    Appl Environ Microbiol; 2018 Oct; 84(19):. PubMed ID: 30030227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.