These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 31525543)
1. Precise estimation of renal vascular dominant regions using spatially aware fully convolutional networks, tensor-cut and Voronoi diagrams. Wang C; Roth HR; Kitasaka T; Oda M; Hayashi Y; Yoshino Y; Yamamoto T; Sassa N; Goto M; Mori K Comput Med Imaging Graph; 2019 Oct; 77():101642. PubMed ID: 31525543 [TBL] [Abstract][Full Text] [Related]
2. Abdominal artery segmentation method from CT volumes using fully convolutional neural network. Oda M; Roth HR; Kitasaka T; Misawa K; Fujiwara M; Mori K Int J Comput Assist Radiol Surg; 2019 Dec; 14(12):2069-2081. PubMed ID: 31493112 [TBL] [Abstract][Full Text] [Related]
3. Fully automatic multi-organ segmentation for head and neck cancer radiotherapy using shape representation model constrained fully convolutional neural networks. Tong N; Gou S; Yang S; Ruan D; Sheng K Med Phys; 2018 Oct; 45(10):4558-4567. PubMed ID: 30136285 [TBL] [Abstract][Full Text] [Related]
4. Tensor-cut: A tensor-based graph-cut blood vessel segmentation method and its application to renal artery segmentation. Wang C; Oda M; Hayashi Y; Yoshino Y; Yamamoto T; Frangi AF; Mori K Med Image Anal; 2020 Feb; 60():101623. PubMed ID: 31884249 [TBL] [Abstract][Full Text] [Related]
5. Deep morphology aided diagnosis network for segmentation of carotid artery vessel wall and diagnosis of carotid atherosclerosis on black-blood vessel wall MRI. Wu J; Xin J; Yang X; Sun J; Xu D; Zheng N; Yuan C Med Phys; 2019 Dec; 46(12):5544-5561. PubMed ID: 31356693 [TBL] [Abstract][Full Text] [Related]
6. A comparison between two semantic deep learning frameworks for the autosomal dominant polycystic kidney disease segmentation based on magnetic resonance images. Bevilacqua V; Brunetti A; Cascarano GD; Guerriero A; Pesce F; Moschetta M; Gesualdo L BMC Med Inform Decis Mak; 2019 Dec; 19(Suppl 9):244. PubMed ID: 31830973 [TBL] [Abstract][Full Text] [Related]
7. Fully-automated functional region annotation of liver via a 2.5D class-aware deep neural network with spatial adaptation. Tian Y; Xue F; Lambo R; He J; An C; Xie Y; Cao H; Qin W Comput Methods Programs Biomed; 2021 Mar; 200():105818. PubMed ID: 33218708 [TBL] [Abstract][Full Text] [Related]
8. A skeleton context-aware 3D fully convolutional network for abdominal artery segmentation. Zhu R; Oda M; Hayashi Y; Kitasaka T; Misawa K; Fujiwara M; Mori K Int J Comput Assist Radiol Surg; 2023 Mar; 18(3):461-472. PubMed ID: 36273078 [TBL] [Abstract][Full Text] [Related]
9. Fast and fully-automated detection and segmentation of pulmonary nodules in thoracic CT scans using deep convolutional neural networks. Huang X; Sun W; Tseng TB; Li C; Qian W Comput Med Imaging Graph; 2019 Jun; 74():25-36. PubMed ID: 30954678 [TBL] [Abstract][Full Text] [Related]
10. Cascaded Regression Neural Nets for Kidney Localization and Segmentation-free Volume Estimation. Hussain MA; Hamarneh G; Garbi R IEEE Trans Med Imaging; 2021 Jun; 40(6):1555-1567. PubMed ID: 33606626 [TBL] [Abstract][Full Text] [Related]
11. Convolutional Neural Network Ensemble Segmentation With Ratio-Based Sampling for the Arteries and Veins in Abdominal CT Scans. Golla AK; Bauer DF; Schmidt R; Russ T; Norenberg D; Chung K; Tonnes C; Schad LR; Zollner FG IEEE Trans Biomed Eng; 2021 May; 68(5):1518-1526. PubMed ID: 33275574 [TBL] [Abstract][Full Text] [Related]
12. Pancreas Segmentation in Abdominal CT Scans using Inter-/Intra-Slice Contextual Information with a Cascade Neural Network. Yang Z; Zhang L; Zhang M; Feng J; Wu Z; Ren F; Lv Y Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5937-5940. PubMed ID: 31947200 [TBL] [Abstract][Full Text] [Related]
13. Spatial aggregation of holistically-nested convolutional neural networks for automated pancreas localization and segmentation. Roth HR; Lu L; Lay N; Harrison AP; Farag A; Sohn A; Summers RM Med Image Anal; 2018 Apr; 45():94-107. PubMed ID: 29427897 [TBL] [Abstract][Full Text] [Related]
14. Automatic segmentation of the clinical target volume and organs at risk in the planning CT for rectal cancer using deep dilated convolutional neural networks. Men K; Dai J; Li Y Med Phys; 2017 Dec; 44(12):6377-6389. PubMed ID: 28963779 [TBL] [Abstract][Full Text] [Related]
15. A fully integrated computer-aided diagnosis system for digital X-ray mammograms via deep learning detection, segmentation, and classification. Al-Antari MA; Al-Masni MA; Choi MT; Han SM; Kim TS Int J Med Inform; 2018 Sep; 117():44-54. PubMed ID: 30032964 [TBL] [Abstract][Full Text] [Related]
16. An automatic method for lung segmentation and reconstruction in chest X-ray using deep neural networks. Souza JC; Bandeira Diniz JO; Ferreira JL; França da Silva GL; Corrêa Silva A; de Paiva AC Comput Methods Programs Biomed; 2019 Aug; 177():285-296. PubMed ID: 31319957 [TBL] [Abstract][Full Text] [Related]
17. Automatic lesion segmentation and classification of hepatic echinococcosis using a multiscale-feature convolutional neural network. Xin S; Shi H; Jide A; Zhu M; Ma C; Liao H Med Biol Eng Comput; 2020 Mar; 58(3):659-668. PubMed ID: 31950330 [TBL] [Abstract][Full Text] [Related]
18. Liver tissue segmentation in multiphase CT scans using cascaded convolutional neural networks. Ouhmich F; Agnus V; Noblet V; Heitz F; Pessaux P Int J Comput Assist Radiol Surg; 2019 Aug; 14(8):1275-1284. PubMed ID: 31041697 [TBL] [Abstract][Full Text] [Related]
19. Deep Semantic Segmentation of Kidney and Space-Occupying Lesion Area Based on SCNN and ResNet Models Combined with SIFT-Flow Algorithm. Xia KJ; Yin HS; Zhang YD J Med Syst; 2018 Nov; 43(1):2. PubMed ID: 30456668 [TBL] [Abstract][Full Text] [Related]
20. Kidney segmentation in CT sequences using graph cuts based active contours model and contextual continuity. Zhang P; Liang Y; Chang S; Fan H Med Phys; 2013 Aug; 40(8):081905. PubMed ID: 23927319 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]