These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 31525548)

  • 1. Application of deep canonically correlated sparse autoencoder for the classification of schizophrenia.
    Li G; Han D; Wang C; Hu W; Calhoun VD; Wang YP
    Comput Methods Programs Biomed; 2020 Jan; 183():105073. PubMed ID: 31525548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-Category Classification of Magnetic Resonance Hearing Loss Images Based on Deep Autoencoder.
    Jia W; Yang M; Wang SH
    J Med Syst; 2017 Sep; 41(10):165. PubMed ID: 28895033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diagnosis of Schizophrenia Based on Deep Learning Using fMRI.
    Zheng J; Wei X; Wang J; Lin H; Pan H; Shi Y
    Comput Math Methods Med; 2021; 2021():8437260. PubMed ID: 34795793
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sparse deep neural networks on imaging genetics for schizophrenia case-control classification.
    Chen J; Li X; Calhoun VD; Turner JA; van Erp TGM; Wang L; Andreassen OA; Agartz I; Westlye LT; Jönsson E; Ford JM; Mathalon DH; Macciardi F; O'Leary DS; Liu J; Ji S
    Hum Brain Mapp; 2021 Jun; 42(8):2556-2568. PubMed ID: 33724588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sparse deep dictionary learning identifies differences of time-varying functional connectivity in brain neuro-developmental study.
    Qiao C; Yang L; Calhoun VD; Xu ZB; Wang YP
    Neural Netw; 2021 Mar; 135():91-104. PubMed ID: 33373885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrating fMRI and SNP data for biomarker identification for schizophrenia with a sparse representation based variable selection method.
    Cao H; Duan J; Lin D; Calhoun V; Wang YP
    BMC Med Genomics; 2013; 6 Suppl 3(Suppl 3):S2. PubMed ID: 24565219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correspondence between fMRI and SNP data by group sparse canonical correlation analysis.
    Lin D; Calhoun VD; Wang YP
    Med Image Anal; 2014 Aug; 18(6):891-902. PubMed ID: 24247004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integration of SNPs-FMRI-methylation data with sparse multi-CCA for schizophrenia study.
    Wenxing Hu ; Dongdong Lin ; Calhoun VD; Yu-Ping Wang
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3310-3313. PubMed ID: 28269013
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive Sparse Multiple Canonical Correlation Analysis With Application to Imaging (Epi)Genomics Study of Schizophrenia.
    Hu W; Lin D; Cao S; Liu J; Chen J; Calhoun VD; Wang YP
    IEEE Trans Biomed Eng; 2018 Feb; 65(2):390-399. PubMed ID: 29364120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Joint Sparse Collaborative Regression on Imaging Genetics Study of Schizophrenia.
    Song X; Li R; Wang K; Bai Y; Xiao Y; Wang YP
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(2):1137-1146. PubMed ID: 35503837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic thresholding networks for schizophrenia diagnosis.
    Zou H; Yang J
    Artif Intell Med; 2019 May; 96():25-32. PubMed ID: 31164208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep Collaborative Learning With Application to the Study of Multimodal Brain Development.
    Hu W; Cai B; Zhang A; Calhoun VD; Wang YP
    IEEE Trans Biomed Eng; 2019 Dec; 66(12):3346-3359. PubMed ID: 30872216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep Canonical Correlation Fusion Algorithm Based on Denoising Autoencoder for ASD Diagnosis and Pathogenic Brain Region Identification.
    Zhang H; Chen J; Liao B; Wu FX; Bi XA
    Interdiscip Sci; 2024 Jun; 16(2):455-468. PubMed ID: 38573456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Sparse Denoising Autoencoder Application in Identification of Counterfeit Pharmaceutical].
    Yang HH; Luo ZC; Jiang SJ; Zhang XB; Yin LH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Sep; 36(9):2774-9. PubMed ID: 30084593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Breath analysis based early gastric cancer classification from deep stacked sparse autoencoder neural network.
    Aslam MA; Xue C; Chen Y; Zhang A; Liu M; Wang K; Cui D
    Sci Rep; 2021 Feb; 11(1):4014. PubMed ID: 33597551
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integration of Imaging (epi)Genomics Data for the Study of Schizophrenia Using Group Sparse Joint Nonnegative Matrix Factorization.
    Wang M; Huang TZ; Fang J; Calhoun VD; Wang YP
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(5):1671-1681. PubMed ID: 30762565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hierarchical Structured Sparse Learning for Schizophrenia Identification.
    Wang M; Hao X; Huang J; Wang K; Shen L; Xu X; Zhang D; Liu M
    Neuroinformatics; 2020 Jan; 18(1):43-57. PubMed ID: 31016571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sparse representation based biomarker selection for schizophrenia with integrated analysis of fMRI and SNPs.
    Cao H; Duan J; Lin D; Shugart YY; Calhoun V; Wang YP
    Neuroimage; 2014 Nov; 102 Pt 1():220-8. PubMed ID: 24530838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using deep autoencoders to identify abnormal brain structural patterns in neuropsychiatric disorders: A large-scale multi-sample study.
    Pinaya WHL; Mechelli A; Sato JR
    Hum Brain Mapp; 2019 Feb; 40(3):944-954. PubMed ID: 30311316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identifying Resting-State Multifrequency Biomarkers via Tree-Guided Group Sparse Learning for Schizophrenia Classification.
    Huang J; Zhu Q; Hao X; Shi X; Gao S; Xu X; Zhang D
    IEEE J Biomed Health Inform; 2019 Jan; 23(1):342-350. PubMed ID: 29994431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.