These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
249 related articles for article (PubMed ID: 31525675)
1. Economic evaluation of improvements in a waste-to-energy combined heat and power plant. Eboh FC; Andersson BÅ; Richards T Waste Manag; 2019 Dec; 100():75-83. PubMed ID: 31525675 [TBL] [Abstract][Full Text] [Related]
2. Co-gasification of solid waste and lignite - a case study for Western Macedonia. Koukouzas N; Katsiadakis A; Karlopoulos E; Kakaras E Waste Manag; 2008; 28(7):1263-75. PubMed ID: 17631995 [TBL] [Abstract][Full Text] [Related]
3. Electricity generation: options for reduction in carbon emissions. Whittington HW Philos Trans A Math Phys Eng Sci; 2002 Aug; 360(1797):1653-68. PubMed ID: 12460490 [TBL] [Abstract][Full Text] [Related]
4. Combining plasma gasification and solid oxide cell technologies in advanced power plants for waste to energy and electric energy storage applications. Perna A; Minutillo M; Lubrano Lavadera A; Jannelli E Waste Manag; 2018 Mar; 73():424-438. PubMed ID: 28965703 [TBL] [Abstract][Full Text] [Related]
5. Refuse Derived Fuel (RDF) production and gasification in a pilot plant integrated with an Otto cycle ICE through Aspen plus™ modelling: Thermodynamic and economic viability. Násner AML; Lora EES; Palacio JCE; Rocha MH; Restrepo JC; Venturini OJ; Ratner A Waste Manag; 2017 Nov; 69():187-201. PubMed ID: 28797628 [TBL] [Abstract][Full Text] [Related]
6. Waste to energy efficiency improvements: Integration with solar thermal energy. Mendecka B; Lombardi L; Gladysz P Waste Manag Res; 2019 Apr; 37(4):419-434. PubMed ID: 30848718 [TBL] [Abstract][Full Text] [Related]
7. Process simulation and comprehensive evaluation of a system of coal power plant coupled with waste incineration. Ye B; Shi B; Shi M; Zhang L; Zhang R Waste Manag Res; 2021 Jun; 39(6):828-840. PubMed ID: 32883185 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of the environmental sustainability of different waste-to-energy plant configurations. Lombardi L; Carnevale EA Waste Manag; 2018 Mar; 73():232-246. PubMed ID: 28728789 [TBL] [Abstract][Full Text] [Related]
9. Implementation of waste-to-energy options in landfill-dominated countries: Economic evaluation and GHG impact. Aracil C; Haro P; Fuentes-Cano D; Gómez-Barea A Waste Manag; 2018 Jun; 76():443-456. PubMed ID: 29610061 [TBL] [Abstract][Full Text] [Related]
10. Comparative analysis of waste-to-energy alternatives for a low-capacity power plant in Brazil. Ferreira ETF; Balestieri JAP Waste Manag Res; 2018 Mar; 36(3):247-258. PubMed ID: 29375021 [TBL] [Abstract][Full Text] [Related]
11. Three municipal solid waste gasification technologies analysis for electrical energy generation in Brazil. Medina Jimenez AC; Bereche RP; Nebra S Waste Manag Res; 2019 Jun; 37(6):631-642. PubMed ID: 30983548 [TBL] [Abstract][Full Text] [Related]
12. Environmental and economic sustainability of poultry litter gasification for electricity and heat generation. Jeswani HK; Whiting A; Martin A; Azapagic A Waste Manag; 2019 Jul; 95():182-191. PubMed ID: 31351603 [TBL] [Abstract][Full Text] [Related]
13. A financial feasibility model of gasification and anaerobic digestion waste-to-energy (WTE) plants in Saudi Arabia. Hadidi LA; Omer MM Waste Manag; 2017 Jan; 59():90-101. PubMed ID: 27773548 [TBL] [Abstract][Full Text] [Related]
14. Modelling and experimental investigation of small-scale gasification CHP units for enhancing the use of local biowaste. de Priall O; Gogulancea V; Brandoni C; Hewitt N; Johnston C; Onofrei G; Huang Y Waste Manag; 2021 Dec; 136():174-183. PubMed ID: 34688147 [TBL] [Abstract][Full Text] [Related]
15. Techno-economic analysis of wind power integrated with both compressed air energy storage (CAES) and biomass gasification energy storage (BGES) for power generation. Diyoke C; Aneke M; Wang M; Wu C RSC Adv; 2018 Jun; 8(39):22004-22022. PubMed ID: 35541755 [TBL] [Abstract][Full Text] [Related]
16. Incorporation of solar-thermal energy into a gasification process to co-produce bio-fertilizer and power. Ansari SH; Ahmed A; Razzaq A; Hildebrandt D; Liu X; Park YK Environ Pollut; 2020 Nov; 266(Pt 3):115103. PubMed ID: 32650303 [TBL] [Abstract][Full Text] [Related]
17. Comparative Evaluation of Integrated Waste Heat Utilization Systems for Coal-Fired Power Plants Based on In-Depth Boiler-Turbine Integration and Organic Rankine Cycle. Huang S; Li C; Tan T; Fu P; Wang L; Yang Y Entropy (Basel); 2018 Jan; 20(2):. PubMed ID: 33265180 [TBL] [Abstract][Full Text] [Related]
18. Biohydrogen production from waste bread in a continuous stirred tank reactor: A techno-economic analysis. Han W; Hu YY; Li SY; Li FF; Tang JH Bioresour Technol; 2016 Dec; 221():318-323. PubMed ID: 27648851 [TBL] [Abstract][Full Text] [Related]
19. Methodology for the optimal design of an integrated first and second generation ethanol production plant combined with power cogeneration. Bechara R; Gomez A; Saint-Antonin V; Schweitzer JM; Maréchal F Bioresour Technol; 2016 Aug; 214():441-449. PubMed ID: 27160954 [TBL] [Abstract][Full Text] [Related]
20. Quantity, Quality, and Availability of Waste Heat from United States Thermal Power Generation. Gingerich DB; Mauter MS Environ Sci Technol; 2015 Jul; 49(14):8297-306. PubMed ID: 26061407 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]