These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 31525944)

  • 1. Passivation of Deep-Level Defects by Cesium Fluoride Post-Deposition Treatment for Improved Device Performance of Cu(In,Ga)Se
    Lee H; Jang Y; Nam SW; Jung C; Choi PP; Gwak J; Yun JH; Kim K; Shin B
    ACS Appl Mater Interfaces; 2019 Oct; 11(39):35653-35660. PubMed ID: 31525944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of the KF post-deposition treatment on grain boundary properties in Cu(In, Ga)Se
    Nicoara N; Lepetit T; Arzel L; Harel S; Barreau N; Sadewasser S
    Sci Rep; 2017 Jan; 7():41361. PubMed ID: 28128351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overall Distribution of Rubidium in Highly Efficient Cu(In,Ga)Se
    Schöppe P; Schönherr S; Jackson P; Wuerz R; Wisniewski W; Ritzer M; Zapf M; Johannes A; Schnohr CS; Ronning C
    ACS Appl Mater Interfaces; 2018 Nov; 10(47):40592-40598. PubMed ID: 30383349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Si-Doping Effects in Cu(In,Ga)Se
    Ishizuka S; Koida T; Taguchi N; Tanaka S; Fons P; Shibata H
    ACS Appl Mater Interfaces; 2017 Sep; 9(36):31119-31128. PubMed ID: 28829112
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the Importance of Joint Mitigation Strategies for Front, Bulk, and Rear Recombination in Ultrathin Cu(In,Ga)Se
    Lopes TS; de Wild J; Rocha C; Violas A; Cunha JMV; Teixeira JP; Curado MA; Oliveira AJN; Borme J; Birant G; Brammertz G; Fernandes PA; Vermang B; Salomé PMP
    ACS Appl Mater Interfaces; 2021 Jun; 13(23):27713-27725. PubMed ID: 34086435
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Employing Si solar cell technology to increase efficiency of ultra-thin Cu(In,Ga)Se
    Vermang B; Wätjen JT; Fjällström V; Rostvall F; Edoff M; Kotipalli R; Henry F; Flandre D
    Prog Photovolt; 2014 Oct; 22(10):1023-1029. PubMed ID: 26300619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High Efficiency CIGS Solar Cells by Bulk Defect Passivation through Ag Substituting Strategy.
    Zhao Y; Yuan S; Kou D; Zhou Z; Wang X; Xiao H; Deng Y; Cui C; Chang Q; Wu S
    ACS Appl Mater Interfaces; 2020 Mar; 12(11):12717-12726. PubMed ID: 32101686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lithium-Doping Effects in Cu(In,Ga)Se
    Ishizuka S; Fons PJ
    ACS Appl Mater Interfaces; 2020 Jun; 12(22):25058-25065. PubMed ID: 32383588
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Over 16% Efficient Solution-Processed Cu(In,Ga)Se
    Gao Q; Yuan S; Zhou Z; Kou D; Zhou W; Meng Y; Qi Y; Han L; Wu S
    Small; 2022 Sep; 18(39):e2203443. PubMed ID: 36026573
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface/Interface Effects by Alkali Postdeposition Treatments of (Ag,Cu)(In,Ga)Se
    Martin NM; Törndahl T; Wallin E; Simonov KA; Rensmo H; Platzer-Björkman C
    ACS Appl Energy Mater; 2022 Jan; 5(1):461-468. PubMed ID: 35098042
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rubidium Fluoride Post-Deposition Treatment: Impact on the Chemical Structure of the Cu(In,Ga)Se
    Kreikemeyer-Lorenzo D; Hauschild D; Jackson P; Friedlmeier TM; Hariskos D; Blum M; Yang W; Reinert F; Powalla M; Heske C; Weinhardt L
    ACS Appl Mater Interfaces; 2018 Oct; 10(43):37602-37608. PubMed ID: 30272438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fingerprints Indicating Superior Properties of Internal Interfaces in Cu(In,Ga)Se
    Raghuwanshi M; Chugh M; Sozzi G; Kanevce A; Kühne TD; Mirhosseini H; Wuerz R; Cojocaru-Mirédin O
    Adv Mater; 2022 Sep; 34(37):e2203954. PubMed ID: 35900293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced Conversion Efficiency of Cu(In,Ga)Se2 Solar Cells via Electrochemical Passivation Treatment.
    Tsai HW; Thomas SR; Chen CW; Wang YC; Tsai HS; Yen YT; Hsu CH; Tsai WC; Wang ZM; Chueh YL
    ACS Appl Mater Interfaces; 2016 Mar; 8(12):7777-82. PubMed ID: 26815164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of Intrinsic ZnO Thickness in Cu(In,Ga)Se
    Alhammadi S; Park H; Kim WK
    Materials (Basel); 2019 Apr; 12(9):. PubMed ID: 31035494
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alkali Dispersion in (Ag,Cu)(In,Ga)Se
    Aboulfadl H; Sopiha KV; Keller J; Larsen JK; Scragg JJS; Persson C; Thuvander M; Edoff M
    ACS Appl Mater Interfaces; 2021 Feb; 13(6):7188-7199. PubMed ID: 33534535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wet Pretreatment-Induced Modification of Cu(In,Ga)Se
    Hwang S; Larina L; Lee H; Kim S; Choi KS; Jeon C; Ahn BT; Shin B
    ACS Appl Mater Interfaces; 2018 Jun; 10(24):20920-20928. PubMed ID: 29806770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Voids and compositional inhomogeneities in Cu(In,Ga)Se
    Avancini E; Keller D; Carron R; Arroyo-Rojas Dasilva Y; Erni R; Priebe A; Di Napoli S; Carrisi M; Sozzi G; Menozzi R; Fu F; Buecheler S; Tiwari AN
    Sci Technol Adv Mater; 2018; 19(1):871-882. PubMed ID: 30479675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of Grating Al
    Park CH; Kim JY; Sung SJ; Kim DH; Do YS
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct evidence for grain boundary passivation in Cu(In,Ga)Se
    Nicoara N; Manaligod R; Jackson P; Hariskos D; Witte W; Sozzi G; Menozzi R; Sadewasser S
    Nat Commun; 2019 Sep; 10(1):3980. PubMed ID: 31484943
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tailored Band Structure of Cu(In,Ga)Se
    Park HK; Cho Y; Kim K; Jeong I; Gwak J; Yun JH; Jo W
    ACS Appl Mater Interfaces; 2022 Aug; 14(30):34697-34705. PubMed ID: 35856522
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.