These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 31525991)

  • 1. Synergistical Dual Strategies Based on in Situ-Converted Heterojunction and Reduction-Induced Surface Oxygen Vacancy for Enhanced Photoelectrochemical Performance of TiO
    He Y; Wang P; Zhu J; Yang Y; Liu Y; Chen M; Cao D; Yan X
    ACS Appl Mater Interfaces; 2019 Oct; 11(40):37322-37329. PubMed ID: 31525991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of an Efficient BiVO4-TiO2 Heterojunction Photoanode for Photoelectrochemical Water Oxidation.
    Cheng BY; Yang JS; Cho HW; Wu JJ
    ACS Appl Mater Interfaces; 2016 Aug; 8(31):20032-9. PubMed ID: 27454929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous Enhancement of Charge Separation and Hole Transportation in a TiO
    Wu F; Yu Y; Yang H; German LN; Li Z; Chen J; Yang W; Huang L; Shi W; Wang L; Wang X
    Adv Mater; 2017 Jul; 29(28):. PubMed ID: 28558165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. n-Fe₂O₃ to N⁺-TiO₂Heterojunction Photoanode for Photoelectrochemical Water Oxidation.
    Yang JS; Lin WH; Lin CY; Wang BS; Wu JJ
    ACS Appl Mater Interfaces; 2015 Jun; 7(24):13314-21. PubMed ID: 26027640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-efficiency SrTiO
    Cheng X; Zhang Y; Hu H; Shang M; Bi Y
    Nanoscale; 2018 Feb; 10(8):3644-3649. PubMed ID: 29424380
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction of TiO
    Zhuo Z; Wang X; Shen C; Cai M; Jiang Y; Xue Z; Fu Z; Wang Q; Wei Y; Sun S
    Chemistry; 2023 Feb; 29(12):e202203450. PubMed ID: 36445821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Constructing SrTiO
    Wei Y; Wang J; Yu R; Wan J; Wang D
    Angew Chem Int Ed Engl; 2019 Jan; 58(5):1422-1426. PubMed ID: 30548179
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conjugated π Electrons of MOFs Drive Charge Separation at Heterostructures Interface for Enhanced Photoelectrochemical Water Oxidation.
    Wang X; Sun W; Tian Y; Dang K; Zhang Q; Shen Z; Zhan S
    Small; 2021 Apr; 17(14):e2100367. PubMed ID: 33690986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of NiCo
    Wang H; Wang Y; Lin Y; Huang X; García-Tecedor M; de la Peña O'Shea VA; Murrill C; Lazarov VK; Oropeza FE; Zhang KHL
    ACS Appl Mater Interfaces; 2023 Jun; 15(23):28739-28746. PubMed ID: 37253189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ferroelectric Polarization-Enhanced Photoelectrochemical Water Splitting in TiO2-BaTiO3 Core-Shell Nanowire Photoanodes.
    Yang W; Yu Y; Starr MB; Yin X; Li Z; Kvit A; Wang S; Zhao P; Wang X
    Nano Lett; 2015 Nov; 15(11):7574-80. PubMed ID: 26492362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activating a TiO
    Liu C; Chen L; Su X; Chen S; Zhang J; Yang H; Pei Y
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):2316-2325. PubMed ID: 34965083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced Photoelectrochemical Property of TiO
    Hamazaki S; Inoue K; Matsuda A; Kawamura G
    ACS Omega; 2024 Jan; 9(2):2795-2802. PubMed ID: 38250430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward Eco-Friendly and Highly Efficient Solar Water Splitting Using In
    Yang JS; Wu JJ
    ACS Appl Mater Interfaces; 2018 Jan; 10(4):3714-3722. PubMed ID: 29299916
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation of the TiO
    Fan X; Wang T; Gao B; Gong H; Xue H; Guo H; Song L; Xia W; Huang X; He J
    Langmuir; 2016 Dec; 32(50):13322-13332. PubMed ID: 27936327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interface and surface engineering of hematite photoanode for efficient solar water oxidation.
    Chen X; Fu Y; Hong L; Kong T; Shi X; Wang G; Qu L; Shen S
    J Chem Phys; 2020 Jun; 152(24):244707. PubMed ID: 32610948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An effective strategy for promoting charge separation by integrating heterojunctions and multiple homojunctions in TiO
    Si H; Zou L; Huang G; Liao J; Lin S
    J Colloid Interface Sci; 2023 Jan; 630(Pt A):888-900. PubMed ID: 36306600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Constructing Fe2O3/TiO2 core-shell photoelectrodes for efficient photoelectrochemical water splitting.
    Wang M; Pyeon M; Gönüllü Y; Kaouk A; Shen S; Guo L; Mathur S
    Nanoscale; 2015 Jun; 7(22):10094-100. PubMed ID: 25980730
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assembling γ-graphyne surrounding TiO
    Qiu D; He C; Lu Y; Li Q; Chen Y; Cui X
    Dalton Trans; 2021 Nov; 50(42):15422-15432. PubMed ID: 34661591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxygen vacancy induces self-doping effect and metalloid LSPR in non-stoichiometric tungsten suboxide synergistically contributing to the enhanced photoelectrocatalytic performance of WO
    Huang W; Wang J; Bian L; Zhao C; Liu D; Guo C; Yang B; Cao W
    Phys Chem Chem Phys; 2018 Jun; 20(25):17268-17278. PubMed ID: 29901058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coupled optical absorption, charge carrier separation, and surface electrochemistry in surface disordered/hydrogenated TiO2 for enhanced PEC water splitting reaction.
    Behara DK; Ummireddi AK; Aragonda V; Gupta PK; Pala RG; Sivakumar S
    Phys Chem Chem Phys; 2016 Mar; 18(12):8364-77. PubMed ID: 26898750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.