These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 31526002)

  • 1. Deep Ultraviolet Plasmonic Enhancement of Single Protein Autofluorescence in Zero-Mode Waveguides.
    Barulin A; Claude JB; Patra S; Bonod N; Wenger J
    Nano Lett; 2019 Oct; 19(10):7434-7442. PubMed ID: 31526002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultraviolet Nanophotonics Enables Autofluorescence Correlation Spectroscopy on Label-Free Proteins with a Single Tryptophan.
    Roy P; Claude JB; Tiwari S; Barulin A; Wenger J
    Nano Lett; 2023 Jan; 23(2):497-504. PubMed ID: 36603115
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Label-free detection of single protein molecules using deep UV fluorescence lifetime microscopy.
    Li Q; Seeger S
    Anal Chem; 2006 Apr; 78(8):2732-7. PubMed ID: 16615786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultraviolet Resonant Nanogap Antennas with Rhodium Nanocube Dimers for Enhancing Protein Intrinsic Autofluorescence.
    Roy P; Zhu S; Claude JB; Liu J; Wenger J
    ACS Nano; 2023 Nov; 17(22):22418-22429. PubMed ID: 37931219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultraviolet Photostability Improvement for Autofluorescence Correlation Spectroscopy on Label-Free Proteins.
    Barulin A; Wenger J
    J Phys Chem Lett; 2020 Mar; 11(6):2027-2035. PubMed ID: 32083877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FRET enhancement in aluminum zero-mode waveguides.
    de Torres J; Ghenuche P; Moparthi SB; Grigoriev V; Wenger J
    Chemphyschem; 2015 Mar; 16(4):782-8. PubMed ID: 25640052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Label-free detection of protein interactions using deep UV fluorescence lifetime microscopy.
    Li Q; Seeger S
    Anal Biochem; 2007 Aug; 367(1):104-10. PubMed ID: 17553449
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Zero-mode waveguides can be made better: fluorescence enhancement with rectangular aluminum nanoapertures from the visible to the deep ultraviolet.
    Baibakov M; Barulin A; Roy P; Claude JB; Patra S; Wenger J
    Nanoscale Adv; 2020 Sep; 2(9):4153-4160. PubMed ID: 36132755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A plasmonic 'antenna-in-box' platform for enhanced single-molecule analysis at micromolar concentrations.
    Punj D; Mivelle M; Moparthi SB; van Zanten TS; Rigneault H; van Hulst NF; García-Parajó MF; Wenger J
    Nat Nanotechnol; 2013 Jul; 8(7):512-6. PubMed ID: 23748196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultraviolet optical horn antennas for label-free detection of single proteins.
    Barulin A; Roy P; Claude JB; Wenger J
    Nat Commun; 2022 Apr; 13(1):1842. PubMed ID: 35383189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmonic antennas and zero-mode waveguides to enhance single molecule fluorescence detection and fluorescence correlation spectroscopy toward physiological concentrations.
    Punj D; Ghenuche P; Moparthi SB; de Torres J; Grigoriev V; Rigneault H; Wenger J
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2014; 6(3):268-82. PubMed ID: 24616447
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aluminum nanoparticles as substrates for metal-enhanced fluorescence in the ultraviolet for the label-free detection of biomolecules.
    Chowdhury MH; Ray K; Gray SK; Pond J; Lakowicz JR
    Anal Chem; 2009 Feb; 81(4):1397-403. PubMed ID: 19159327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aluminum nanopyramid array with tunable ultraviolet-visible-infrared wavelength plasmon resonances for rapid detection of carbohydrate antigen 199.
    Li W; Qiu Y; Zhang L; Jiang L; Zhou Z; Chen H; Zhou J
    Biosens Bioelectron; 2016 May; 79():500-7. PubMed ID: 26748367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmonic zero mode waveguide for highly confined and enhanced fluorescence emission.
    Ponzellini P; Zambrana-Puyalto X; Maccaferri N; Lanzanò L; De Angelis F; Garoli D
    Nanoscale; 2018 Sep; 10(36):17362-17369. PubMed ID: 30199084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoscale Plasmonic V-Groove Waveguides for the Interrogation of Single Fluorescent Bacterial Cells.
    Lotan O; Bar-David J; Smith CLC; Yagur-Kroll S; Belkin S; Kristensen A; Levy U
    Nano Lett; 2017 Sep; 17(9):5481-5488. PubMed ID: 28771367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmon-Enhanced Autofluorescence Imaging of Organelles in Label-Free Cells by Deep-Ultraviolet Excitation.
    Kikawada M; Ono A; Inami W; Kawata Y
    Anal Chem; 2016 Jan; 88(2):1407-11. PubMed ID: 26669415
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-molecule detection and radiation control in solutions at high concentrations via a heterogeneous optical slot antenna.
    Zhao C; Liu Y; Yang J; Zhang J
    Nanoscale; 2014 Aug; 6(15):9103-9. PubMed ID: 24976558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultraviolet-Visible Chiroptical Activity of Aluminum Nanostructures.
    Liu J; Yang L; Zhang H; Wang J; Huang Z
    Small; 2017 Oct; 13(39):. PubMed ID: 28783232
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of Zero Mode Waveguides for High Concentration Single Molecule Microscopy.
    Chen KY; Jamiolkowski RM; Tate AM; Fiorenza SA; Pfeil SH; Goldman YE
    J Vis Exp; 2020 May; (159):. PubMed ID: 32478723
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced fluorescence of proteins and label-free bioassays using aluminum nanostructures.
    Ray K; Szmacinski H; Lakowicz JR
    Anal Chem; 2009 Aug; 81(15):6049-54. PubMed ID: 19594133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.