BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 31526222)

  • 21. Lymphatic vessels transition to state of summation above a critical contraction frequency.
    Meisner JK; Stewart RH; Laine GA; Quick CM
    Am J Physiol Regul Integr Comp Physiol; 2007 Jul; 293(1):R200-8. PubMed ID: 17363681
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lymphatic contractility; a possible intrinsic mechanism of lymphatic vessels for the transport of lymph.
    SMITH RO
    J Exp Med; 1949 Nov; 90(5):497-509. PubMed ID: 18143591
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Postnatal development of lymphatic vessels and their smooth muscle cells in the rat diaphragm: a confocal microscopic study.
    Ohtani Y; Ohtani O
    Arch Histol Cytol; 2001 Dec; 64(5):513-22. PubMed ID: 11838711
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fluid Osmolarity Acutely and Differentially Modulates Lymphatic Vessels Intrinsic Contractions and Lymph Flow.
    Solari E; Marcozzi C; Negrini D; Moriondo A
    Front Physiol; 2018; 9():871. PubMed ID: 30026707
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of dynamic shear and transmural pressure on wall shear stress sensitivity in collecting lymphatic vessels.
    Kornuta JA; Nepiyushchikh Z; Gasheva OY; Mukherjee A; Zawieja DC; Dixon JB
    Am J Physiol Regul Integr Comp Physiol; 2015 Nov; 309(9):R1122-34. PubMed ID: 26333787
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Contractile stimuli in collecting lymph vessels.
    Hargens AR; Zweifach BW
    Am J Physiol; 1977 Jul; 233(1):H57-65. PubMed ID: 879337
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Doxorubicin Activates Ryanodine Receptors in Rat Lymphatic Muscle Cells to Attenuate Rhythmic Contractions and Lymph Flow.
    Stolarz AJ; Sarimollaoglu M; Marecki JC; Fletcher TW; Galanzha EI; Rhee SW; Zharov VP; Klimberg VS; Rusch NJ
    J Pharmacol Exp Ther; 2019 Nov; 371(2):278-289. PubMed ID: 31439806
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Postprandial lymphatic pump function after a high-fat meal: a characterization of contractility, flow, and viscosity.
    Kassis T; Yarlagadda SC; Kohan AB; Tso P; Breedveld V; Dixon JB
    Am J Physiol Gastrointest Liver Physiol; 2016 May; 310(10):G776-89. PubMed ID: 26968208
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of substance P on mesenteric lymphatic contractility in the rat.
    Amerini S; Ziche M; Greiner ST; Zawieja DC
    Lymphat Res Biol; 2004; 2(1):2-10. PubMed ID: 15609922
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of intact mesenteric lymphatic pump and its responsiveness to acute edemagenic stress.
    Benoit JN; Zawieja DC; Goodman AH; Granger HJ
    Am J Physiol; 1989 Dec; 257(6 Pt 2):H2059-69. PubMed ID: 2603989
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanisms of VIP-induced inhibition of the lymphatic vessel pump.
    von der Weid PY; Rehal S; Dyrda P; Lee S; Mathias R; Rahman M; Roizes S; Imtiaz MS
    J Physiol; 2012 Jun; 590(11):2677-91. PubMed ID: 22451438
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Entrainment of Lymphatic Contraction to Oscillatory Flow.
    Mukherjee A; Hooks J; Nepiyushchikh Z; Dixon JB
    Sci Rep; 2019 Apr; 9(1):5840. PubMed ID: 30967585
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lymphangion coordination minimally affects mean flow in lymphatic vessels.
    Venugopal AM; Stewart RH; Laine GA; Dongaonkar RM; Quick CM
    Am J Physiol Heart Circ Physiol; 2007 Aug; 293(2):H1183-9. PubMed ID: 17468331
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mesenteric lymphatic vessels adapt to mesenteric venous hypertension by becoming weaker pumps.
    Dongaonkar RM; Nguyen TL; Quick CM; Heaps CL; Hardy J; Laine GA; Wilson E; Stewart RH
    Am J Physiol Regul Integr Comp Physiol; 2015 Mar; 308(5):R391-9. PubMed ID: 25519727
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Morphological, Mechanical and Hydrodynamic Aspects of Diaphragmatic Lymphatics.
    Negrini D
    Biology (Basel); 2022 Dec; 11(12):. PubMed ID: 36552311
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of rat tail lymphatic contractility and biomechanics: incorporating nitric oxide-mediated vasoregulation.
    Razavi MS; Dixon JB; Gleason RL
    J R Soc Interface; 2020 Sep; 17(170):20200598. PubMed ID: 32993429
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Methods for Assessing the Contractile Function of Mouse Lymphatic Vessels Ex Vivo.
    Castorena-Gonzalez JA; Scallan JP; Davis MJ
    Methods Mol Biol; 2018; 1846():229-248. PubMed ID: 30242763
    [TBL] [Abstract][Full Text] [Related]  

  • 38. First-order approximation for the pressure-flow relationship of spontaneously contracting lymphangions.
    Quick CM; Venugopal AM; Dongaonkar RM; Laine GA; Stewart RH
    Am J Physiol Heart Circ Physiol; 2008 May; 294(5):H2144-9. PubMed ID: 18326809
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Draining the Pleural Space: Lymphatic Vessels Facing the Most Challenging Task.
    Solari E; Marcozzi C; Ottaviani C; Negrini D; Moriondo A
    Biology (Basel); 2022 Mar; 11(3):. PubMed ID: 35336793
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lymph transport in rat mesenteric lymphatics experiencing edemagenic stress.
    Rahbar E; Akl T; Coté GL; Moore JE; Zawieja DC
    Microcirculation; 2014 Jul; 21(5):359-67. PubMed ID: 24397756
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.