These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 31526222)

  • 41. The effects of valve leaflet mechanics on lymphatic pumping assessed using numerical simulations.
    Li H; Mei Y; Maimon N; Padera TP; Baish JW; Munn LL
    Sci Rep; 2019 Jul; 9(1):10649. PubMed ID: 31337769
    [TBL] [Abstract][Full Text] [Related]  

  • 42. High-Density Lipoprotein Composition Influences Lymphatic Transport after Subcutaneous Administration.
    Gracia G; Cao E; Feeney OM; Johnston APR; Porter CJH; Trevaskis NL
    Mol Pharm; 2020 Aug; 17(8):2938-2951. PubMed ID: 32543863
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Method for the quantitative measurement of collecting lymphatic vessel contraction in mice.
    Liao S; Jones D; Cheng G; Padera TP
    J Biol Methods; 2014; 1(2):. PubMed ID: 25512945
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Differences in L-type Ca
    Zawieja SD; Castorena-Gonzalez JA; Scallan JP; Davis MJ
    Am J Physiol Heart Circ Physiol; 2018 May; 314(5):H991-H1010. PubMed ID: 29351458
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Venomotion modulates lymphatic pumping in the bat wing.
    Dongaonkar RM; Stewart RH; Laine GA; Davis MJ; Zawieja DC; Quick CM
    Am J Physiol Heart Circ Physiol; 2009 Jun; 296(6):H2015-21. PubMed ID: 19329767
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Consequences of intravascular lymphatic valve properties: a study of contraction timing in a multi-lymphangion model.
    Bertram CD; Macaskill C; Davis MJ; Moore JE
    Am J Physiol Heart Circ Physiol; 2016 Apr; 310(7):H847-60. PubMed ID: 26747501
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Subatmospheric pressure in the rabbit pleural lymphatic network.
    Negrini D; Del Fabbro M
    J Physiol; 1999 Nov; 520 Pt 3(Pt 3):761-9. PubMed ID: 10545142
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fluid pumping of peristaltic vessel fitted with elastic valves.
    Wolf KT; Dixon JB; Alexeev A
    J Fluid Mech; 2021 Jul; 918():. PubMed ID: 34366443
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Inducible Nitric Oxide Synthase and CD11b
    Liao S; Bouta EM; Morris LM; Jones D; Jain RK; Padera TP
    Lymphat Res Biol; 2019 Jun; 17(3):294-300. PubMed ID: 30358484
    [No Abstract]   [Full Text] [Related]  

  • 50. A high salt diet alters pressure-induced mechanical activity of the rat lymphatics with enhancement of myogenic characteristics.
    Mizuno R; Isshiki M; Ono N; Nishimoto M; Fujita T
    Lymphat Res Biol; 2015 Mar; 13(1):2-9. PubMed ID: 25526023
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A one-dimensional mathematical model of collecting lymphatics coupled with an electro-fluid-mechanical contraction model and valve dynamics.
    Contarino C; Toro EF
    Biomech Model Mechanobiol; 2018 Dec; 17(6):1687-1714. PubMed ID: 30006745
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Real-Time Evaluation of Absolute, Cytosolic, Free Ca2+ and Corresponding Contractility in Isolated, Pressurized Lymph Vessels.
    Pal S; Bagchi AK; Stolarz AJ
    J Vis Exp; 2024 Mar; (205):. PubMed ID: 38587372
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Characterization of contractile properties of porcine mesenteric and tracheobronchial lymphatic smooth muscle.
    Ferguson MK; DeFilippi VJ; Reeder LB
    Lymphology; 1994 Jun; 27(2):71-81. PubMed ID: 8078363
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A High-Salt Diet Differentially Modulates Mechanical Activity of Afferent and Efferent Collecting Lymphatics in Murine Iliac Lymph Nodes.
    Mizuno R; Isshiki M; Ono N; Nishimoto M; Fujita T
    Lymphat Res Biol; 2015 Jun; 13(2):85-92. PubMed ID: 26091404
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A Validation Study of Near-Infrared Fluorescence Imaging of Lymphatic Vessels in Humans.
    Groenlund JH; Telinius N; Skov SN; Hjortdal V
    Lymphat Res Biol; 2017 Sep; 15(3):227-234. PubMed ID: 28749720
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Quantitative model for predicting lymph formation and muscle compressibility in skeletal muscle during contraction and stretch.
    Causey L; Cowin SC; Weinbaum S
    Proc Natl Acad Sci U S A; 2012 Jun; 109(23):9185-90. PubMed ID: 22615376
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Diaphragmatic lymph vessel drainage of the peritoneal cavity.
    Drake RE; Gabel JC
    Blood Purif; 1992; 10(3-4):132-5. PubMed ID: 1308679
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Lymphatic smooth muscle: the motor unit of lymph drainage.
    von der Weid PY; Zawieja DC
    Int J Biochem Cell Biol; 2004 Jul; 36(7):1147-53. PubMed ID: 15109561
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Flow reduces the amplitude and increases the frequency of lymphatic vasomotion: role of endothelial prostanoids.
    Koller A; Mizuno R; Kaley G
    Am J Physiol; 1999 Dec; 277(6):R1683-9. PubMed ID: 10600914
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Impact of Goreisan components on rat mesenteric collecting lymphatic vessel pumping.
    Jo M; Trujillo AN; Shibahara N; Breslin JW
    Microcirculation; 2023 Apr; 30(2-3):e12788. PubMed ID: 36169611
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.