These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 31526473)

  • 1. Looking inside an injection system.
    Howard SA; Filloux A
    Elife; 2019 Sep; 8():. PubMed ID: 31526473
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The
    Vlisidou I; Hapeshi A; Healey JR; Smart K; Yang G; Waterfield NR
    Elife; 2019 Sep; 8():. PubMed ID: 31526474
    [No Abstract]   [Full Text] [Related]  

  • 3. Elucidating the in vivo targets of photorhabdus toxins in real-time using Drosophila embryos.
    Vlisidou I; Waterfield N; Wood W
    Adv Exp Med Biol; 2012; 710():49-57. PubMed ID: 22127885
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A contractile injection system stimulates tubeworm metamorphosis by translocating a proteinaceous effector.
    Ericson CF; Eisenstein F; Medeiros JM; Malter KE; Cavalcanti GS; Zeller RW; Newman DK; Pilhofer M; Shikuma NJ
    Elife; 2019 Sep; 8():. PubMed ID: 31526475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photorhabdus virulence cassettes confer injectable insecticidal activity against the wax moth.
    Yang G; Dowling AJ; Gerike U; ffrench-Constant RH; Waterfield NR
    J Bacteriol; 2006 Mar; 188(6):2254-61. PubMed ID: 16513755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of Photorhabdus Virulence Cassette as a causative agent in the emerging pathogen Photorhabdus asymbiotica.
    Wang X; Cheng J; Shen J; Liu L; Li N; Gao N; Jiang F; Jin Q
    Sci China Life Sci; 2022 Mar; 65(3):618-630. PubMed ID: 34185241
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Programmable protein delivery with a bacterial contractile injection system.
    Kreitz J; Friedrich MJ; Guru A; Lash B; Saito M; Macrae RK; Zhang F
    Nature; 2023 Apr; 616(7956):357-364. PubMed ID: 36991127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The KdpD/KdpE two-component system of Photorhabdus asymbiotica promotes bacterial survival within M. sexta hemocytes.
    Vlisidou I; Eleftherianos I; Dorus S; Yang G; ffrench-Constant RH; Reynolds SE; Waterfield NR
    J Invertebr Pathol; 2010 Nov; 105(3):352-62. PubMed ID: 20932844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toxins and secretion systems of Photorhabdus luminescens.
    Rodou A; Ankrah DO; Stathopoulos C
    Toxins (Basel); 2010 Jun; 2(6):1250-64. PubMed ID: 22069636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ail and PagC-related proteins in the entomopathogenic bacteria of Photorhabdus genus.
    Mouammine A; Lanois A; Pagès S; Lafay B; Molle V; Canova M; Girard PA; Duvic B; Givaudan A; Gaudriault S
    PLoS One; 2014; 9(10):e110060. PubMed ID: 25333642
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential in vitro pathogenicity of Photorhabdus bacterial species against two distinct insect cell lines.
    Maldonado T; Eleftherianos I
    Res Microbiol; 2021; 172(3):103832. PubMed ID: 33794299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A genomic sample sequence of the entomopathogenic bacterium Photorhabdus luminescens W14: potential implications for virulence.
    Ffrench-Constant RH; Waterfield N; Burland V; Perna NT; Daborn PJ; Bowen D; Blattner FR
    Appl Environ Microbiol; 2000 Aug; 66(8):3310-29. PubMed ID: 10919786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photorhabdus adhesion modification protein (Pam) binds extracellular polysaccharide and alters bacterial attachment.
    Jones RT; Sanchez-Contreras M; Vlisidou I; Amos MR; Yang G; Muñoz-Berbel X; Upadhyay A; Potter UJ; Joyce SA; Ciche TA; Jenkins AT; Bagby S; Ffrench-Constant RH; Waterfield NR
    BMC Microbiol; 2010 May; 10():141. PubMed ID: 20462430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Imd pathway is involved in the interaction of Drosophila melanogaster with the entomopathogenic bacteria, Xenorhabdus nematophila and Photorhabdus luminescens.
    Aymeric JL; Givaudan A; Duvic B
    Mol Immunol; 2010 Aug; 47(14):2342-8. PubMed ID: 20627393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rearing and injection of Manduca sexta larvae to assess bacterial virulence.
    Hussa E; Goodrich-Blair H
    J Vis Exp; 2012 Dec; (70):e4295. PubMed ID: 23271332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identifying Anti-host Effectors in Photorhabdus.
    Dowling AJ
    Curr Top Microbiol Immunol; 2017; 402():25-38. PubMed ID: 28091931
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and characterization of the insecticidal toxin "makes caterpillars floppy" in Photorhabdus temperata M1021 using a cosmid library.
    Ullah I; Jang EK; Kim MS; Shin JH; Park GS; Khan AR; Hong SJ; Jung BK; Choi J; Park Y; Kwak Y; Shin JH
    Toxins (Basel); 2014 Jul; 6(7):2024-40. PubMed ID: 25014195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Photorhabdus Pir toxins are similar to a developmentally regulated insect protein but show no juvenile hormone esterase activity.
    Waterfield N; Kamita SG; Hammock BD; ffrench-Constant R
    FEMS Microbiol Lett; 2005 Apr; 245(1):47-52. PubMed ID: 15796978
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The exbD gene of Photorhabdus temperata is required for full virulence in insects and symbiosis with the nematode Heterorhabditis.
    Watson RJ; Joyce SA; Spencer GV; Clarke DJ
    Mol Microbiol; 2005 May; 56(3):763-73. PubMed ID: 15819630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacterial glycosyltransferase toxins.
    Jank T; Belyi Y; Aktories K
    Cell Microbiol; 2015 Dec; 17(12):1752-65. PubMed ID: 26445410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.