These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 31526571)

  • 61. CRISPR-Cas9 gene editing induced complex on-target outcomes in human cells.
    Wen W; Zhang XB
    Exp Hematol; 2022 Jun; 110():13-19. PubMed ID: 35304271
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Improvement of CRISPR/Cas9 system by transfecting Cas9-expressing Plasmodium berghei with linear donor template.
    Shinzawa N; Nishi T; Hiyoshi F; Motooka D; Yuda M; Iwanaga S
    Commun Biol; 2020 Aug; 3(1):426. PubMed ID: 32759952
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Tissue specificity of DNA repair: the CRISPR compass.
    Ferreira da Silva J; Meyenberg M; Loizou JI
    Trends Genet; 2021 Nov; 37(11):958-962. PubMed ID: 34392967
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Domain-specific introduction to machine learning terminology, pitfalls and opportunities in CRISPR-based gene editing.
    O'Brien AR; Burgio G; Bauer DC
    Brief Bioinform; 2021 Jan; 22(1):308-314. PubMed ID: 32008042
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Homology directed correction, a new pathway model for point mutation repair catalyzed by CRISPR-Cas.
    Sansbury BM; Hewes AM; Tharp OM; Masciarelli SB; Kaouser S; Kmiec EB
    Sci Rep; 2022 May; 12(1):8132. PubMed ID: 35581233
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Multiple site-directed mutagenesis via simple cloning by prolonged overlap extension.
    Hejlesen R; Füchtbauer EM
    Biotechniques; 2020 Jun; 68(6):345-348. PubMed ID: 32372650
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Comprehensive Analysis of CRISPR-Cas9 Editing Outcomes in Yeast
    Hong J; Meng Z; Zhang Z; Su H; Fan Y; Huang R; Ding R; Zhang N; Li F; Wang S
    CRISPR J; 2022 Aug; 5(4):558-570. PubMed ID: 35506993
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Dissecting protein function in vivo: Engineering allelic series in mice using CRISPR-Cas9 technology.
    Cassidy AM; Kuliyev E; Thomas DB; Chen H; Pelletier S
    Methods Enzymol; 2022; 667():775-812. PubMed ID: 35525561
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Very fast CRISPR on demand.
    Liu Y; Zou RS; He S; Nihongaki Y; Li X; Razavi S; Wu B; Ha T
    Science; 2020 Jun; 368(6496):1265-1269. PubMed ID: 32527834
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Deep Mutational Scanning of Protein-Protein Interactions Between Partners Expressed from Their Endogenous Loci In Vivo.
    Dubé AK; Dandage R; Dibyachintan S; Dionne U; Després PC; Landry CR
    Methods Mol Biol; 2022; 2477():237-259. PubMed ID: 35524121
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A detection method for the capture of genomic signatures: From disease diagnosis to genome editing.
    Benamozig O; Baudrier L; Billon P
    Methods Enzymol; 2021; 661():251-282. PubMed ID: 34776215
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Genotyping Genome-Edited Founders and Subsequent Generation.
    Mackenzie M; Fower A; Allan AJ; Codner GF; Bunton-Stasyshyn RK; Teboul L
    Methods Mol Biol; 2023; 2631():103-134. PubMed ID: 36995665
    [TBL] [Abstract][Full Text] [Related]  

  • 73. PreAcrs: a machine learning framework for identifying anti-CRISPR proteins.
    Zhu L; Wang X; Li F; Song J
    BMC Bioinformatics; 2022 Oct; 23(1):444. PubMed ID: 36284264
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Precision genome editing.
    Strack R
    Nat Methods; 2019 Jan; 16(1):21. PubMed ID: 30573836
    [No Abstract]   [Full Text] [Related]  

  • 75. Delivery of genetic load during ex situ liver machine perfusion with potential for CRISPR-Cas9 gene editing: An innovative strategy for graft treatment.
    Bonaccorsi-Riani E; Gillooly A; Brüggenwirth IMA; Martins PN
    Hepatobiliary Pancreat Dis Int; 2021 Oct; 20(5):503-505. PubMed ID: 33958293
    [No Abstract]   [Full Text] [Related]  

  • 76. [The crispr / cas9 techniques applied to human genetic enhancement: a biotechnological, anthropological-philosophical and legal dialogue].
    Santa María D Angelo R; Quiceno Osorio JD; Torres Flor A; Perochena Escalante AC
    Cuad Bioet; 2020; 31(103):343-355. PubMed ID: 33375801
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Cas9-induced single cut enables highly efficient and template-free repair of a muscular dystrophy causing founder mutation.
    Müthel S; Marg A; Ignak B; Kieshauer J; Escobar H; Stadelmann C; Spuler S
    Mol Ther Nucleic Acids; 2023 Mar; 31():494-511. PubMed ID: 36865086
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Advances in genome editing through control of DNA repair pathways.
    Yeh CD; Richardson CD; Corn JE
    Nat Cell Biol; 2019 Dec; 21(12):1468-1478. PubMed ID: 31792376
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Transversion Expansion of Base Editing.
    Nishida K; Kondo A
    CRISPR J; 2021 Aug; 4(4):462-463. PubMed ID: 34406044
    [No Abstract]   [Full Text] [Related]  

  • 80. Repair-seq: Seeking and Perturbing DNA Repair.
    Medhi D; Jasin M
    CRISPR J; 2021 Dec; 4(6):773-775. PubMed ID: 34935489
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.