These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 31526586)

  • 1. A probabilistic method to estimate gait kinetics in the absence of ground reaction force measurements.
    Tanghe K; Afschrift M; Jonkers I; De Groote F; De Schutter J; Aertbeliën E
    J Biomech; 2019 Nov; 96():109327. PubMed ID: 31526586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Joint Torque Prediction via Hybrid Neuromusculoskeletal Modelling during Gait Using Statistical Ground Reaction Estimates: An Exploratory Study.
    Lam SK; Vujaklija I
    Sensors (Basel); 2021 Oct; 21(19):. PubMed ID: 34640917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of ground reaction forces and ankle moment with multiple, low-cost sensors.
    Jacobs DA; Ferris DP
    J Neuroeng Rehabil; 2015 Oct; 12():90. PubMed ID: 26467753
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative analysis of methods for estimating arm segment parameters and joint torques from inverse dynamics.
    Piovesan D; Pierobon A; Dizio P; Lackner JR
    J Biomech Eng; 2011 Mar; 133(3):031003. PubMed ID: 21303179
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamically adjustable foot-ground contact model to estimate ground reaction force during walking and running.
    Jung Y; Jung M; Ryu J; Yoon S; Park SK; Koo S
    Gait Posture; 2016 Mar; 45():62-8. PubMed ID: 26979885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ground reaction force estimation using an insole-type pressure mat and joint kinematics during walking.
    Jung Y; Jung M; Lee K; Koo S
    J Biomech; 2014 Aug; 47(11):2693-9. PubMed ID: 24917473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toward goal-oriented robotic gait training: The effect of gait speed and stride length on lower extremity joint torques.
    McGrath RL; Pires-Fernandes M; Knarr B; Higginson JS; Sergi F
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():270-275. PubMed ID: 28813830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accurate Real-Time Joint Torque Estimation for Dynamic Prediction of Human Locomotion.
    Dinovitzer H; Shushtari M; Arami A
    IEEE Trans Biomed Eng; 2023 Aug; 70(8):2289-2297. PubMed ID: 37022250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of Three-Dimensional Lower Limb Kinetics Data during Walking Using Machine Learning from a Single IMU Attached to the Sacrum.
    Lee M; Park S
    Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33158140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dependent-Gaussian-Process-Based Learning of Joint Torques Using Wearable Smart Shoes for Exoskeleton.
    Yang J; Yin Y
    Sensors (Basel); 2020 Jun; 20(13):. PubMed ID: 32630133
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of stride length on lower extremity joint kinetics at various gait speeds.
    McGrath RL; Ziegler ML; Pires-Fernandes M; Knarr BA; Higginson JS; Sergi F
    PLoS One; 2019; 14(2):e0200862. PubMed ID: 30794565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Joint torques estimation in human gait based on Gaussian process.
    Yang J; Wang Z; Sun T
    Technol Health Care; 2023; 31(1):197-204. PubMed ID: 35964218
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Test of two prediction methods for minimum and maximum values of gait kinematics and kinetics data over a range of speeds.
    Fukuchi CA; Fukuchi RK; Duarte M
    Gait Posture; 2019 Sep; 73():269-272. PubMed ID: 31394369
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inverse dynamics of mechanical multibody systems: An improved algorithm that ensures consistency between kinematics and external forces.
    Faber H; van Soest AJ; Kistemaker DA
    PLoS One; 2018; 13(9):e0204575. PubMed ID: 30265727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Joint torques in a freely walking insect reveal distinct functions of leg joints in propulsion and posture control.
    Dallmann CJ; Dürr V; Schmitz J
    Proc Biol Sci; 2016 Jan; 283(1823):. PubMed ID: 26791608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of Lower Extremity Joint Moments and 3D Ground Reaction Forces Using IMU Sensors in Multiple Walking Conditions: A Deep Learning Approach.
    Hossain MSB; Guo Z; Choi H
    IEEE J Biomed Health Inform; 2023 Jun; 27(6):2829-2840. PubMed ID: 37030855
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Joint kinetics during Tai Chi gait and normal walking gait in young and elderly Tai Chi Chuan practitioners.
    Wu G; Millon D
    Clin Biomech (Bristol); 2008 Jul; 23(6):787-95. PubMed ID: 18342415
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of ground reaction forces during gait based on kinematics and a neural network model.
    Oh SE; Choi A; Mun JH
    J Biomech; 2013 Sep; 46(14):2372-80. PubMed ID: 23962528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Are patient-specific joint and inertial parameters necessary for accurate inverse dynamics analyses of gait?
    Reinbolt JA; Haftka RT; Chmielewski TL; Fregly BJ
    IEEE Trans Biomed Eng; 2007 May; 54(5):782-93. PubMed ID: 17518274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lower limb joint motion and muscle force in treadmill and over-ground exercise.
    Yao J; Guo N; Xiao Y; Li Z; Li Y; Pu F; Fan Y
    Biomed Eng Online; 2019 Aug; 18(1):89. PubMed ID: 31438944
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.