These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 31526586)

  • 41. A prediction method of speed-dependent walking patterns for healthy individuals.
    Fukuchi CA; Duarte M
    Gait Posture; 2019 Feb; 68():280-284. PubMed ID: 30551054
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Calculation of joint reaction force and joint moments using by wearable walking analysis system.
    Adachi W; Tsujiuchi N; Koizumi T; Shiojima K; Tsuchiya Y; Inoue Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():507-10. PubMed ID: 23365940
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Methodological factors affecting joint moments estimation in clinical gait analysis: a systematic review.
    Camomilla V; Cereatti A; Cutti AG; Fantozzi S; Stagni R; Vannozzi G
    Biomed Eng Online; 2017 Aug; 16(1):106. PubMed ID: 28821242
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Joint Torque and Mechanical Power of Lower Extremity and Its Relevance to Hamstring Strain during Sprint Running.
    Zhong Y; Fu W; Wei S; Li Q; Liu Y
    J Healthc Eng; 2017; 2017():8927415. PubMed ID: 29065661
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Errors in alignment of center of pressure and foot coordinates affect predicted lower extremity torques.
    McCaw ST; DeVita P
    J Biomech; 1995 Aug; 28(8):985-8. PubMed ID: 7673265
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Kalman smoothing improves the estimation of joint kinematics and kinetics in marker-based human gait analysis.
    De Groote F; De Laet T; Jonkers I; De Schutter J
    J Biomech; 2008 Dec; 41(16):3390-8. PubMed ID: 19026414
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Consistent accuracy in whole-body joint kinetics during gait using wearable inertial motion sensors and in-shoe pressure sensors.
    Khurelbaatar T; Kim K; Lee S; Kim YH
    Gait Posture; 2015 Jun; 42(1):65-9. PubMed ID: 25957652
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A Deep Learning Model for 3D Ground Reaction Force Estimation Using Shoes with Three Uniaxial Load Cells.
    Kim J; Kang H; Lee S; Choi J; Tack G
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050487
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Estimation of Ankle Joint Power during Walking Using Two Inertial Sensors.
    Jiang X; Gholami M; Khoshnam M; Eng JJ; Menon C
    Sensors (Basel); 2019 Jun; 19(12):. PubMed ID: 31234451
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Systematic review and meta-analysis of gait mechanics in young and older adults.
    Boyer KA; Johnson RT; Banks JJ; Jewell C; Hafer JF
    Exp Gerontol; 2017 Sep; 95():63-70. PubMed ID: 28499954
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Functional roles of lower-limb joint moments while walking in water.
    Miyoshi T; Shirota T; Yamamoto S; Nakazawa K; Akai M
    Clin Biomech (Bristol); 2005 Feb; 20(2):194-201. PubMed ID: 15621325
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Gait analysis on force treadmill in children: comparison with results from ground-based force platforms.
    Tesio L; Malloggi C; Portinaro NM; Catino L; Lovecchio N; Rota V
    Int J Rehabil Res; 2017 Dec; 40(4):315-324. PubMed ID: 28719477
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Joint moments and contact forces in the foot during walking.
    Kim Y; Lee KM; Koo S
    J Biomech; 2018 Jun; 74():79-85. PubMed ID: 29735264
    [TBL] [Abstract][Full Text] [Related]  

  • 55. From normal to fast walking: Impact of cadence and stride length on lower extremity joint moments.
    Ardestani MM; Ferrigno C; Moazen M; Wimmer MA
    Gait Posture; 2016 May; 46():118-25. PubMed ID: 27131188
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Walking patterns and hip contact forces in patients with hip dysplasia.
    Skalshøi O; Iversen CH; Nielsen DB; Jacobsen J; Mechlenburg I; Søballe K; Sørensen H
    Gait Posture; 2015 Oct; 42(4):529-33. PubMed ID: 26365370
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Residual force enhancement during multi-joint leg extensions at joint- angle configurations close to natural human motion.
    Paternoster FK; Seiberl W; Hahn D; Schwirtz A
    J Biomech; 2016 Mar; 49(5):773-779. PubMed ID: 26903409
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Indirect Estimation of Vertical Ground Reaction Force from a Body-Mounted INS/GPS Using Machine Learning.
    Sharma D; Davidson P; Müller P; Piché R
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33672353
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Gait analysis on split-belt force treadmills: validation of an instrument.
    Tesio L; Rota V
    Am J Phys Med Rehabil; 2008 Jul; 87(7):515-26. PubMed ID: 18388556
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A sensitivity analysis method for the body segment inertial parameters based on ground reaction and joint moment regressor matrices.
    Futamure S; Bonnet V; Dumas R; Venture G
    J Biomech; 2017 Nov; 64():85-92. PubMed ID: 28947159
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.