These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 31526838)
21. FDM 3D printing of modified drug-delivery systems using hot melt extrusion: a new approach for individualized therapy. Cunha-Filho M; Araújo MR; Gelfuso GM; Gratieri T Ther Deliv; 2017 Nov; 8(11):957-966. PubMed ID: 29061104 [TBL] [Abstract][Full Text] [Related]
22. Preparation and in vitro evaluation of Eudragit microspheres containing acetazolamide. Haznedar S; Dortunç B Int J Pharm; 2004 Jan; 269(1):131-40. PubMed ID: 14698584 [TBL] [Abstract][Full Text] [Related]
23. Influence of lidocaine forms (salt vs. freebase) on properties of drug-eudragit® L100-55 extrudates prepared by reactive melt extrusion. Liu X; Ma X; Kun E; Guo X; Yu Z; Zhang F Int J Pharm; 2018 Aug; 547(1-2):291-302. PubMed ID: 29883791 [TBL] [Abstract][Full Text] [Related]
24. Relevance of Nanotechnology in Solving Oral Drug Delivery Challenges: A Perspective Review. Dhadde SB; Patil JS; Chandakavathe BN; Thippeswamy BS; Kavatekar MG Crit Rev Ther Drug Carrier Syst; 2020; 37(5):407-434. PubMed ID: 33389846 [TBL] [Abstract][Full Text] [Related]
25. Combination of 3D printing technologies and compressed tablets for preparation of riboflavin floating tablet-in-device (TiD) systems. Fu J; Yin H; Yu X; Xie C; Jiang H; Jin Y; Sheng F Int J Pharm; 2018 Oct; 549(1-2):370-379. PubMed ID: 30107218 [TBL] [Abstract][Full Text] [Related]
26. Immediate Release 3D-Printed Tablets Produced Via Fused Deposition Modeling of a Thermo-Sensitive Drug. Kempin W; Domsta V; Grathoff G; Brecht I; Semmling B; Tillmann S; Weitschies W; Seidlitz A Pharm Res; 2018 Apr; 35(6):124. PubMed ID: 29679157 [TBL] [Abstract][Full Text] [Related]
27. Formulation of 3D Printed Tablet for Rapid Drug Release by Fused Deposition Modeling: Screening Polymers for Drug Release, Drug-Polymer Miscibility and Printability. Solanki NG; Tahsin M; Shah AV; Serajuddin ATM J Pharm Sci; 2018 Jan; 107(1):390-401. PubMed ID: 29066279 [TBL] [Abstract][Full Text] [Related]
29. Extended release delivery system of metoprolol succinate using hot-melt extrusion: effect of release modifier on methacrylic acid copolymer. Sawant KP; Fule R; Maniruzzaman M; Amin PD Drug Deliv Transl Res; 2018 Dec; 8(6):1679-1693. PubMed ID: 29948916 [TBL] [Abstract][Full Text] [Related]
30. Raman spectroscopy for the in-line polymer-drug quantification and solid state characterization during a pharmaceutical hot-melt extrusion process. Saerens L; Dierickx L; Lenain B; Vervaet C; Remon JP; De Beer T Eur J Pharm Biopharm; 2011 Jan; 77(1):158-63. PubMed ID: 20933084 [TBL] [Abstract][Full Text] [Related]
31. Ethylene vinyl acetate (EVA) as a new drug carrier for 3D printed medical drug delivery devices. Genina N; Holländer J; Jukarainen H; Mäkilä E; Salonen J; Sandler N Eur J Pharm Sci; 2016 Jul; 90():53-63. PubMed ID: 26545484 [TBL] [Abstract][Full Text] [Related]
32. The development of sustained release drug delivery platforms using melt-extruded cellulose-based polymer blends. Wilson MR; Jones DS; Andrews GP J Pharm Pharmacol; 2017 Jan; 69(1):32-42. PubMed ID: 27747867 [TBL] [Abstract][Full Text] [Related]
33. 3D printing and enteric coating of a hollow capsular device with controlled drug release characteristics prepared using extruded Eudragit® filaments. Choudhury D; Murty US; Banerjee S Pharm Dev Technol; 2021 Nov; 26(9):1010-1020. PubMed ID: 34412566 [TBL] [Abstract][Full Text] [Related]
34. Stability study of ambroxol hydrochloride sustained release pellets coated with acrylic polymer. Kibria G; Islam KM; Jalil RU Pak J Pharm Sci; 2009 Jan; 22(1):36-43. PubMed ID: 19168418 [TBL] [Abstract][Full Text] [Related]
35. Feasibility study into the potential use of fused-deposition modeling to manufacture 3D-printed enteric capsules in compounding pharmacies. Nober C; Manini G; Carlier E; Raquez JM; Benali S; Dubois P; Amighi K; Goole J Int J Pharm; 2019 Oct; 569():118581. PubMed ID: 31369828 [TBL] [Abstract][Full Text] [Related]
36. Controlled release of a poorly water-soluble drug from hot-melt extrudates containing acrylic polymers. Zhu Y; Shah NH; Malick AW; Infeld MH; McGinity JW Drug Dev Ind Pharm; 2006 Jun; 32(5):569-83. PubMed ID: 16720412 [TBL] [Abstract][Full Text] [Related]
37. 'Temporary Plasticiser': A novel solution to fabricate 3D printed patient-centred cardiovascular 'Polypill' architectures. Pereira BC; Isreb A; Forbes RT; Dores F; Habashy R; Petit JB; Alhnan MA; Oga EF Eur J Pharm Biopharm; 2019 Feb; 135():94-103. PubMed ID: 30579852 [TBL] [Abstract][Full Text] [Related]
38. Pharmaceutical 3D printing: Design and qualification of a single step print and fill capsule. Smith DM; Kapoor Y; Klinzing GR; Procopio AT Int J Pharm; 2018 Jun; 544(1):21-30. PubMed ID: 29605694 [TBL] [Abstract][Full Text] [Related]
39. A Biocompatible 4D Printing Shape Memory Polymer as Emerging Strategy for Fabrication of Deployable Medical Devices. He W; Zhou D; Gu H; Qu R; Cui C; Zhou Y; Wang Y; Zhang X; Wang Q; Wang T; Zhang Y Macromol Rapid Commun; 2023 Jan; 44(2):e2200553. PubMed ID: 36029168 [TBL] [Abstract][Full Text] [Related]
40. Insights into the Safety and Versatility of 4D Printed Intravesical Drug Delivery Systems. Uboldi M; Perrotta C; Moscheni C; Zecchini S; Napoli A; Castiglioni C; Gazzaniga A; Melocchi A; Zema L Pharmaceutics; 2023 Feb; 15(3):. PubMed ID: 36986618 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]