These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 31527086)

  • 1. PCu
    Fisher OS; Sendzik MR; Ross MO; Lawton TJ; Hoffman BM; Rosenzweig AC
    J Biol Chem; 2019 Nov; 294(44):16351-16363. PubMed ID: 31527086
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heterogeneity in the Histidine-brace Copper Coordination Sphere in Auxiliary Activity Family 10 (AA10) Lytic Polysaccharide Monooxygenases.
    Chaplin AK; Wilson MT; Hough MA; Svistunenko DA; Hemsworth GR; Walton PH; Vijgenboom E; Worrall JAR
    J Biol Chem; 2016 Jun; 291(24):12838-12850. PubMed ID: 27129229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of the valence and coordination environment of the particulate methane monooxygenase copper centers by advanced EPR characterization.
    Culpepper MA; Cutsail GE; Gunderson WA; Hoffman BM; Rosenzweig AC
    J Am Chem Soc; 2014 Aug; 136(33):11767-75. PubMed ID: 25059917
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure and characterization of particulate methane monooxygenase from Methylocystis species strain M.
    Smith SM; Rawat S; Telser J; Hoffman BM; Stemmler TL; Rosenzweig AC
    Biochemistry; 2011 Nov; 50(47):10231-40. PubMed ID: 22013879
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelling a 'histidine brace' motif in mononuclear copper monooxygenases.
    Fukatsu A; Morimoto Y; Sugimoto H; Itoh S
    Chem Commun (Camb); 2020 May; 56(38):5123-5126. PubMed ID: 32297615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coordination of the Copper Centers in Particulate Methane Monooxygenase: Comparison between Methanotrophs and Characterization of the Cu
    Jodts RJ; Ross MO; Koo CW; Doan PE; Rosenzweig AC; Hoffman BM
    J Am Chem Soc; 2021 Sep; 143(37):15358-15368. PubMed ID: 34498465
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The CopC Family: Structural and Bioinformatic Insights into a Diverse Group of Periplasmic Copper Binding Proteins.
    Lawton TJ; Kenney GE; Hurley JD; Rosenzweig AC
    Biochemistry; 2016 Apr; 55(15):2278-90. PubMed ID: 27010565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insights into an unusual Auxiliary Activity 9 family member lacking the histidine brace motif of lytic polysaccharide monooxygenases.
    Frandsen KEH; Tovborg M; Jørgensen CI; Spodsberg N; Rosso MN; Hemsworth GR; Garman EF; Grime GW; Poulsen JN; Batth TS; Miyauchi S; Lipzen A; Daum C; Grigoriev IV; Johansen KS; Henrissat B; Berrin JG; Lo Leggio L
    J Biol Chem; 2019 Nov; 294(45):17117-17130. PubMed ID: 31471321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Copper binding and reactivity at the histidine brace motif: insights from mutational analysis of the Pseudomonas fluorescens copper chaperone CopC.
    Ipsen JØ; Hernández-Rollán C; Muderspach SJ; Brander S; Bertelsen AB; Jensen PE; Nørholm MHH; Lo Leggio L; Johansen KS
    FEBS Lett; 2021 Jun; 595(12):1708-1720. PubMed ID: 33896006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biochemical evidence of both copper chelation and oxygenase activity at the histidine brace.
    Brander S; Horvath I; Ipsen JØ; Peciulyte A; Olsson L; Hernández-Rollán C; Nørholm MHH; Mossin S; Leggio LL; Probst C; Thiele DJ; Johansen KS
    Sci Rep; 2020 Oct; 10(1):16369. PubMed ID: 33004835
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A designed Copper Histidine-brace enzyme for oxidative depolymerization of polysaccharides as a model of lytic polysaccharide monooxygenase.
    Liu Y; Harnden KA; Van Stappen C; Dikanov SA; Lu Y
    Proc Natl Acad Sci U S A; 2023 Oct; 120(43):e2308286120. PubMed ID: 37844252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kβ Valence to Core X-ray Emission Studies of Cu(I) Binding Proteins with Mixed Methionine - Histidine Coordination. Relevance to the Reactivity of the M- and H-sites of Peptidylglycine Monooxygenase.
    Martin-Diaconescu V; Chacón KN; Delgado-Jaime MU; Sokaras D; Weng TC; DeBeer S; Blackburn NJ
    Inorg Chem; 2016 Apr; 55(7):3431-9. PubMed ID: 26965786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lytic polysaccharide monooxygenases and other histidine-brace copper proteins: structure, oxygen activation and biotechnological applications.
    Ipsen JØ; Hallas-Møller M; Brander S; Lo Leggio L; Johansen KS
    Biochem Soc Trans; 2021 Feb; 49(1):531-540. PubMed ID: 33449071
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From micelles to bicelles: Effect of the membrane on particulate methane monooxygenase activity.
    Ro SY; Ross MO; Deng YW; Batelu S; Lawton TJ; Hurley JD; Stemmler TL; Hoffman BM; Rosenzweig AC
    J Biol Chem; 2018 Jul; 293(27):10457-10465. PubMed ID: 29739854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Copper-dioxygen complex mediated C-H bond oxygenation: relevance for particulate methane monooxygenase (pMMO).
    Himes RA; Karlin KD
    Curr Opin Chem Biol; 2009 Feb; 13(1):119-31. PubMed ID: 19286415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the possible roles of N-terminal His-rich domains of Cu,Zn SODs of some Gram-negative bacteria.
    Arus D; Jancsó A; Szunyogh D; Matyuska F; Nagy NV; Hoffmann E; Körtvélyesi T; Gajda T
    J Inorg Biochem; 2012 Jan; 106(1):10-8. PubMed ID: 22105012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variations in methanobactin structure influences copper utilization by methane-oxidizing bacteria.
    El Ghazouani A; Baslé A; Gray J; Graham DW; Firbank SJ; Dennison C
    Proc Natl Acad Sci U S A; 2012 May; 109(22):8400-4. PubMed ID: 22582172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methanobactin transport machinery.
    Dassama LM; Kenney GE; Ro SY; Zielazinski EL; Rosenzweig AC
    Proc Natl Acad Sci U S A; 2016 Nov; 113(46):13027-13032. PubMed ID: 27807137
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The biochemistry of methane oxidation.
    Hakemian AS; Rosenzweig AC
    Annu Rev Biochem; 2007; 76():223-41. PubMed ID: 17328677
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mapping the protonation states of the histidine brace in an AA10 lytic polysaccharide monooxygenase using CW-EPR spectroscopy and DFT calculations.
    Lindley PJ; Parkin A; Davies GJ; Walton PH
    Faraday Discuss; 2022 May; 234(0):336-348. PubMed ID: 35171174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.