BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 31527117)

  • 1. Coxiella burnetii utilizes both glutamate and glucose during infection with glucose uptake mediated by multiple transporters.
    Kuba M; Neha N; De Souza DP; Dayalan S; Newson JPM; Tull D; McConville MJ; Sansom FM; Newton HJ
    Biochem J; 2019 Oct; 476(19):2851-2867. PubMed ID: 31527117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physicochemical and Nutritional Requirements for Axenic Replication Suggest Physiological Basis for
    Vallejo Esquerra E; Yang H; Sanchez SE; Omsland A
    Front Cell Infect Microbiol; 2017; 7():190. PubMed ID: 28620582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. EirA Is a Novel Protein Essential for Intracellular Replication of Coxiella burnetii.
    Kuba M; Neha N; Newton P; Lee YW; Bennett-Wood V; Hachani A; De Souza DP; Nijagal B; Dayalan S; Tull D; McConville MJ; Sansom FM; Newton HJ
    Infect Immun; 2020 May; 88(6):. PubMed ID: 32205404
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Critical Role for Molecular Iron in Coxiella burnetii Replication and Viability.
    Sanchez SE; Omsland A
    mSphere; 2020 Jul; 5(4):. PubMed ID: 32699121
    [No Abstract]   [Full Text] [Related]  

  • 5. The Type IV Secretion System Effector Protein CirA Stimulates the GTPase Activity of RhoA and Is Required for Virulence in a Mouse Model of Coxiella burnetii Infection.
    Weber MM; Faris R; van Schaik EJ; McLachlan JT; Wright WU; Tellez A; Roman VA; Rowin K; Case ED; Luo ZQ; Samuel JE
    Infect Immun; 2016 Sep; 84(9):2524-33. PubMed ID: 27324482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Noncanonical Inhibition of mTORC1 by Coxiella burnetii Promotes Replication within a Phagolysosome-Like Vacuole.
    Larson CL; Sandoz KM; Cockrell DC; Heinzen RA
    mBio; 2019 Feb; 10(1):. PubMed ID: 30723133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic Plasticity Aids Amphotropism of Coxiella burnetii.
    Sanchez SE; Goodman AG; Omsland A
    Infect Immun; 2021 Nov; 89(12):e0013521. PubMed ID: 34491791
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A screen of Coxiella burnetii mutants reveals important roles for Dot/Icm effectors and host autophagy in vacuole biogenesis.
    Newton HJ; Kohler LJ; McDonough JA; Temoche-Diaz M; Crabill E; Hartland EL; Roy CR
    PLoS Pathog; 2014 Jul; 10(7):e1004286. PubMed ID: 25080348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Host pathways important for Coxiella burnetii infection revealed by genome-wide RNA interference screening.
    McDonough JA; Newton HJ; Klum S; Swiss R; Agaisse H; Roy CR
    mBio; 2013 Jan; 4(1):e00606-12. PubMed ID: 23362322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coxiella burnetii effector proteins that localize to the parasitophorous vacuole membrane promote intracellular replication.
    Larson CL; Beare PA; Voth DE; Howe D; Cockrell DC; Bastidas RJ; Valdivia RH; Heinzen RA
    Infect Immun; 2015 Feb; 83(2):661-70. PubMed ID: 25422265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Farnesylated Coxiella burnetii Effector Forms a Multimeric Complex at the Mitochondrial Outer Membrane during Infection.
    Fielden LF; Moffatt JH; Kang Y; Baker MJ; Khoo CA; Roy CR; Stojanovski D; Newton HJ
    Infect Immun; 2017 May; 85(5):. PubMed ID: 28242621
    [No Abstract]   [Full Text] [Related]  

  • 12. The Effector Cig57 Hijacks FCHO-Mediated Vesicular Trafficking to Facilitate Intracellular Replication of Coxiella burnetii.
    Latomanski EA; Newton P; Khoo CA; Newton HJ
    PLoS Pathog; 2016 Dec; 12(12):e1006101. PubMed ID: 28002452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple Substrate Usage of
    Häuslein I; Cantet F; Reschke S; Chen F; Bonazzi M; Eisenreich W
    Front Cell Infect Microbiol; 2017; 7():285. PubMed ID: 28706879
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Bitew MA; Khoo CA; Neha N; De Souza DP; Tull D; Wawegama NK; Newton HJ; Sansom FM
    J Biol Chem; 2018 Nov; 293(48):18636-18645. PubMed ID: 30315113
    [No Abstract]   [Full Text] [Related]  

  • 15. Characterisation of putative lactate synthetic pathways of Coxiella burnetii.
    Hofmann J; Bitew MA; Kuba M; De Souza DP; Newton HJ; Sansom FM
    PLoS One; 2021; 16(8):e0255925. PubMed ID: 34388185
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effector protein translocation by the Coxiella burnetii Dot/Icm type IV secretion system requires endocytic maturation of the pathogen-occupied vacuole.
    Newton HJ; McDonough JA; Roy CR
    PLoS One; 2013; 8(1):e54566. PubMed ID: 23349930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coxiella burnetii Requires Host Eukaryotic Initiation Factor 2α Activity for Efficient Intracellular Replication.
    Brann KR; Fullerton MS; Voth DE
    Infect Immun; 2020 Jun; 88(7):. PubMed ID: 32284364
    [No Abstract]   [Full Text] [Related]  

  • 18. Lysosomal trafficking regulator restricts intracellular growth of
    Wan W; Zhang S; Zhao M; OuYang X; Yu Y; Xiong X; Zhao N; Jiao J
    Front Cell Infect Microbiol; 2023; 13():1336600. PubMed ID: 38282619
    [No Abstract]   [Full Text] [Related]  

  • 19. Dot/Icm-Translocated Proteins Important for Biogenesis of the Coxiella burnetii-Containing Vacuole Identified by Screening of an Effector Mutant Sublibrary.
    Crabill E; Schofield WB; Newton HJ; Goodman AL; Roy CR
    Infect Immun; 2018 Apr; 86(4):. PubMed ID: 29339460
    [No Abstract]   [Full Text] [Related]  

  • 20. The SCID Mouse Model for Identifying Virulence Determinants in
    van Schaik EJ; Case ED; Martinez E; Bonazzi M; Samuel JE
    Front Cell Infect Microbiol; 2017; 7():25. PubMed ID: 28217558
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 14.