These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 31527343)
1. The Bacteriological Properties of Bacillus Strain TM-I-3 and Analysis of the Volatile Antifungal Compounds Emitted by this Bacteria. Osaki C; Yamaguchi K; Urakawa S; Nakashima Y; Sugita K; Nagaishi M; Mitsuiki S; Kuraoka T; Ogawa Y; Sato H Biocontrol Sci; 2019; 24(3):129-136. PubMed ID: 31527343 [TBL] [Abstract][Full Text] [Related]
2. Growth Inhibitory Mechanism of Contact-independent Antifungal TM-I-3 Bacillus sporothermodurans Strain against Aspergillus fumigatus and Cladosporium cladosporioides. Osaki C; Miyake S; Urakawa S; Mitsuiki S; Shimomoto H; Sato H Biocontrol Sci; 2021; 26(1):49-53. PubMed ID: 33716249 [TBL] [Abstract][Full Text] [Related]
3. Antifungal and plant growth promotion activity of volatile organic compounds produced by Bacillus amyloliquefaciens. Wu Y; Zhou J; Li C; Ma Y Microbiologyopen; 2019 Aug; 8(8):e00813. PubMed ID: 30907064 [TBL] [Abstract][Full Text] [Related]
4. Diversity of food-borne Bacillus volatile compounds and influence on fungal growth. Chaves-López C; Serio A; Gianotti A; Sacchetti G; Ndagijimana M; Ciccarone C; Stellarini A; Corsetti A; Paparella A J Appl Microbiol; 2015 Aug; 119(2):487-99. PubMed ID: 25989039 [TBL] [Abstract][Full Text] [Related]
5. Isolation and identification of antifungal peptides from Bacillus BH072, a novel bacterium isolated from honey. Zhao X; Zhou ZJ; Han Y; Wang ZZ; Fan J; Xiao HZ Microbiol Res; 2013 Nov; 168(9):598-606. PubMed ID: 23545354 [TBL] [Abstract][Full Text] [Related]
6. Antifungal activity of volatile organic compounds from Streptomyces alboflavus TD-1. Wang C; Wang Z; Qiao X; Li Z; Li F; Chen M; Wang Y; Huang Y; Cui H FEMS Microbiol Lett; 2013 Apr; 341(1):45-51. PubMed ID: 23351181 [TBL] [Abstract][Full Text] [Related]
7. Diffusible and volatile organic compounds produced by avocado rhizobacteria exhibit antifungal effects against Fusarium kuroshium. Guevara-Avendaño E; Bravo-Castillo KR; Monribot-Villanueva JL; Kiel-Martínez AL; Ramírez-Vázquez M; Guerrero-Analco JA; Reverchon F Braz J Microbiol; 2020 Sep; 51(3):861-873. PubMed ID: 32166656 [TBL] [Abstract][Full Text] [Related]
8. Isolation and characterization of Bacillus sp. producing broad-spectrum antibiotics against human and plant pathogenic fungi. Chen N; Jin M; Qu HM; Chen ZQ; Chen ZL; Qiu ZG; Wang XW; Li JW J Microbiol Biotechnol; 2012 Feb; 22(2):256-63. PubMed ID: 22370359 [TBL] [Abstract][Full Text] [Related]
9. Antifungal activity of volatile compounds produced by Staphylococcus sciuri strain MarR44 and its potential for the biocontrol of Colletotrichum nymphaeae, causal agent strawberry anthracnose. Alijani Z; Amini J; Ashengroph M; Bahramnejad B Int J Food Microbiol; 2019 Oct; 307():108276. PubMed ID: 31408741 [TBL] [Abstract][Full Text] [Related]
10. Antifungal Activity of Volatile Organic Compounds Produced by He CN; Ye WQ; Zhu YY; Zhou WW Molecules; 2020 Jul; 25(15):. PubMed ID: 32722108 [TBL] [Abstract][Full Text] [Related]
11. Avocado rhizobacteria emit volatile organic compounds with antifungal activity against Fusarium solani, Fusarium sp. associated with Kuroshio shot hole borer, and Colletotrichum gloeosporioides. Guevara-Avendaño E; Bejarano-Bolívar AA; Kiel-Martínez AL; Ramírez-Vázquez M; Méndez-Bravo A; von Wobeser EA; Sánchez-Rangel D; Guerrero-Analco JA; Eskalen A; Reverchon F Microbiol Res; 2019 Feb; 219():74-83. PubMed ID: 30642469 [TBL] [Abstract][Full Text] [Related]
12. Antifungal activity of volatile compounds-producing Pseudomonas P2 strain against Rhizoctonia solani. Elkahoui S; Djébali N; Yaich N; Azaiez S; Hammami M; Essid R; Limam F World J Microbiol Biotechnol; 2015 Jan; 31(1):175-85. PubMed ID: 25384611 [TBL] [Abstract][Full Text] [Related]
13. Identification and characterization of a chitinase-produced bacillus showing significant antifungal activity. Xiao L; Xie CC; Cai J; Lin ZJ; Chen YH Curr Microbiol; 2009 May; 58(5):528-33. PubMed ID: 19189178 [TBL] [Abstract][Full Text] [Related]
14. GC-MS analysis of volatile organic compounds from Bambara groundnut rhizobacteria and their antibacterial properties. Ajilogba CF; Babalola OO World J Microbiol Biotechnol; 2019 May; 35(6):83. PubMed ID: 31134356 [TBL] [Abstract][Full Text] [Related]
15. The lactic acid bacteria metabolite phenyllactic acid inhibits both radial growth and sporulation of filamentous fungi. Svanström Å; Boveri S; Boström E; Melin P BMC Res Notes; 2013 Nov; 6():464. PubMed ID: 24229396 [TBL] [Abstract][Full Text] [Related]
16. Exopolysaccharide produced by Bacillus licheniformis strains isolated from Kimchi. Song YR; Song NE; Kim JH; Nho YC; Baik SH J Gen Appl Microbiol; 2011; 57(3):169-75. PubMed ID: 21817829 [No Abstract] [Full Text] [Related]
17. Volatile organic compounds of Bacillus atrophaeus HAB-5 inhibit the growth of Colletotrichum gloeosporioides. Rajaofera MJN; Wang Y; Dahar GY; Jin P; Fan L; Xu L; Liu W; Miao W Pestic Biochem Physiol; 2019 May; 156():170-176. PubMed ID: 31027577 [TBL] [Abstract][Full Text] [Related]
18. Isolation and characterization of a novel Burkholderia cepacia with strong antifungal activity against Rhizoctonia solani. Quan CS; Zheng W; Liu Q; Ohta Y; Fan SD Appl Microbiol Biotechnol; 2006 Oct; 72(6):1276-84. PubMed ID: 16708194 [TBL] [Abstract][Full Text] [Related]