These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 31527452)
1. Steam Explosion Treatment of Byproduct Feedstuffs for Potential Use as Ruminant Feed. Liu Y; Ren X; Wu H; Meng Q; Zhou Z Animals (Basel); 2019 Sep; 9(9):. PubMed ID: 31527452 [TBL] [Abstract][Full Text] [Related]
2. Steam explosion processing intensifies the nutritional values of most crop byproducts: Morphological structure, carbohydrate-protein fractions, and rumen fermentation profile. He L; Huang Y; Shi L; Zhou Z; Wu H Front Nutr; 2022; 9():979609. PubMed ID: 36324623 [TBL] [Abstract][Full Text] [Related]
3. Non-destructive analysis of the conformational differences among feedstock sources and their corresponding co-products from bioethanol production with molecular spectroscopy. Gamage IH; Jonker A; Zhang X; Yu P Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jan; 118():407-21. PubMed ID: 24076457 [TBL] [Abstract][Full Text] [Related]
4. Exploring the genetic variability in yield, nutritional and digestibility traits in oat grains through ruminant nutrition. Singh S; Koli P; Ahmed S; Kumar N; Rana M; Singhal R; Indu ; Choudhary M; Ren Y Heliyon; 2024 May; 10(10):e31541. PubMed ID: 38813156 [TBL] [Abstract][Full Text] [Related]
5. Effects of chemical composition variation on the dynamics of ruminal fermentation and biological value of corn milling (co)products. Tedeschi LO; Kononoff PJ; Karges K; Gibson ML J Dairy Sci; 2009 Jan; 92(1):401-13. PubMed ID: 19109298 [TBL] [Abstract][Full Text] [Related]
6. Effect of steam explosion and microbial fermentation on cellulose and lignin degradation of corn stover. Chang J; Cheng W; Yin Q; Zuo R; Song A; Zheng Q; Wang P; Wang X; Liu J Bioresour Technol; 2012 Jan; 104():587-92. PubMed ID: 22104102 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of the nutritive value of muiumba (Baikiaea plurijuga) seeds: chemical composition, in vitro organic matter digestibility and in vitro gas production. Rodrigues MA; Lourenço AL; Cone JW; Nunes FM; Santos AS; Cordeiro JM; Guedes CM; Ferreira LM Springerplus; 2014; 3():311. PubMed ID: 25019049 [TBL] [Abstract][Full Text] [Related]
8. Effects of steam explosion on lignocellulosic degradation of, and methane production from, corn stover by a co-cultured anaerobic fungus and methanogen. Shi Q; Li Y; Li Y; Cheng Y; Zhu W Bioresour Technol; 2019 Oct; 290():121796. PubMed ID: 31319215 [TBL] [Abstract][Full Text] [Related]
9. Nutritive Value Variation and In Vitro Digestibility of Hempseed Meal. Jacobson KJ; Kinman LA; Owsley WF; Muir JP; Smith WB Animals (Basel); 2021 Dec; 11(12):. PubMed ID: 34944257 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of the digestibility of steam-exploded wheat straw by ruminal fermentation, sugar yield and microbial structure Du C; Nan X; Wang K; Zhao Y; Xiong B RSC Adv; 2019 Dec; 9(71):41775-41782. PubMed ID: 35541616 [TBL] [Abstract][Full Text] [Related]
11. Effect of steam explosion of oil palm frond and empty fruit bunch on nutrient composition and ruminal fermentation characteristics. Wu H; Zhou Z; Yang Y; Meng Q Trop Anim Health Prod; 2020 May; 52(3):1223-1228. PubMed ID: 31707684 [TBL] [Abstract][Full Text] [Related]
12. [Apparent digestion coefficients for dry matter, protein and essential amino acids in terrestrial ingredients for Pacific shrimp Litopenaeus vannamei (Decapoda: Penaeidae)]. Terrazas M; Civera R; Ibarra L; Goytortúa E Rev Biol Trop; 2010 Dec; 58(4):1561-76. PubMed ID: 21250486 [TBL] [Abstract][Full Text] [Related]
13. Enhanced enzymatic hydrolysis and methane production from rubber wood waste using steam explosion. Eom T; Chaiprapat S; Charnnok B J Environ Manage; 2019 Apr; 235():231-239. PubMed ID: 30684808 [TBL] [Abstract][Full Text] [Related]
14. Solid state bioconversion of wheat straw into digestible and nutritive ruminant feed by Ganoderma sp. rckk02. Shrivastava B; Nandal P; Sharma A; Jain KK; Khasa YP; Das TK; Mani V; Kewalramani NJ; Kundu SS; Kuhad RC Bioresour Technol; 2012 Mar; 107():347-51. PubMed ID: 22227143 [TBL] [Abstract][Full Text] [Related]
15. Anaerobic digestibility and fiber composition of bulrush in response to steam explosion. Wang J; Yue ZB; Chen TH; Peng SC; Yu HQ; Chen HZ Bioresour Technol; 2010 Sep; 101(17):6610-4. PubMed ID: 20382015 [TBL] [Abstract][Full Text] [Related]
16. The effect of Pleurotus spp. fungi on chemical composition and in vitro digestibility of rice straw. Jafari MA; Nikkhah A; Sadeghi AA; Chamani M Pak J Biol Sci; 2007 Aug; 10(15):2460-4. PubMed ID: 19070114 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of various feedstuffs of ruminants in terms of chemical composition and metabolisable energy content. Kumar D; Datt C; Das LK; Kundu SS Vet World; 2015 May; 8(5):605-9. PubMed ID: 27047142 [TBL] [Abstract][Full Text] [Related]
18. Molecular basis of protein structure in combined feeds (hulless barley with bioethanol coproduct of wheat dried distillers grains with solubles) in relation to protein rumen degradation kinetics and intestinal availability in dairy cattle. Zhang X; Yu P J Dairy Sci; 2012 Jun; 95(6):3363-79. PubMed ID: 22612970 [TBL] [Abstract][Full Text] [Related]
19. Effect of dehulling of rapeseed on feed value and nutrient digestibility of rape products in pigs. Kracht W; Dänicke S; Kluge H; Keller K; Matzke W; Hennig U; Schumann W Arch Anim Nutr; 2004 Oct; 58(5):389-404. PubMed ID: 15595622 [TBL] [Abstract][Full Text] [Related]
20. Comparisons of the micronization, steam explosion, and gamma irradiation treatment on chemical composition, structure, physicochemical properties, and in vitro digestibility of dietary fiber from soybean hulls. Zhu L; Yu B; Chen H; Yu J; Yan H; Luo Y; He J; Huang Z; Zheng P; Mao X; Luo J; Chen D Food Chem; 2022 Jan; 366():130618. PubMed ID: 34330028 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]