BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

368 related articles for article (PubMed ID: 31527466)

  • 1. Preparation of Phase Change Microcapsules with the Enhanced Photothermal Performance.
    Tahan Latibari S; Eversdijk J; Cuypers R; Drosou V; Shahi M
    Polymers (Basel); 2019 Sep; 11(9):. PubMed ID: 31527466
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication and Performance of Composite Microencapsulated Phase Change Materials with Palmitic Acid Ethyl Ester as Core.
    Yin Q; Zhu Z; Li W; Guo M; Wang Y; Wang J; Zhang X
    Polymers (Basel); 2018 Jul; 10(7):. PubMed ID: 30960651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accelerated Thermal Cycling Test of Microencapsulated Paraffin Wax/Polyaniline Made by Simple Preparation Method for Solar Thermal Energy Storage.
    Silakhori M; Naghavi MS; Metselaar HSC; Mahlia TMI; Fauzi H; Mehrali M
    Materials (Basel); 2013 Apr; 6(5):1608-1620. PubMed ID: 28809232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cadmium Sulfide-Reinforced Double-Shell Microencapsulated Phase Change Materials for Advanced Thermal Energy Storage.
    Zhang S; Zhu Y; Zhang H; Xu F; Sun L; Xia Y; Lin X; Peng H; Ma L; Li B; Yan E; Huang P
    Polymers (Basel); 2022 Dec; 15(1):. PubMed ID: 36616456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual-Functional Aligned and Interconnected Graphite Nanoplatelet Networks for Accelerating Solar Thermal Energy Harvesting and Storage within Phase Change Materials.
    Wu S; Li T; Wu M; Xu J; Chao J; Hu Y; Yan T; Li QY; Wang R
    ACS Appl Mater Interfaces; 2021 Apr; 13(16):19200-19210. PubMed ID: 33871977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phase Change Materials Meet Microfluidic Encapsulation.
    Guo Y; Hou T; Wang J; Yan Y; Li W; Ren Y; Yan S
    Adv Sci (Weinh); 2023 Nov; ():e2304580. PubMed ID: 37963852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase Change Microcapsules with a Polystyrene/Boron Nitride Nanosheet Hybrid Shell for Enhanced Thermal Management of Electronics.
    Zhang W; Cheng H; Pan R; Yang JH; Gong Y; Gan Z; Hu R; Ding J; Chen L; Zhang X; Tian X
    Langmuir; 2022 Dec; 38(51):16055-16066. PubMed ID: 36521186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Influence of Environmentally Friendly Flame Retardants on the Thermal Stability of Phase Change Polyurethane Foams.
    Liu D; Hu A
    Materials (Basel); 2020 Jan; 13(3):. PubMed ID: 31978972
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of NaF Microcapsules for High-Temperature Thermal Storage.
    Jiang Y; Wang Q; Tian S; Luo Z; Wang D; Bai Y; Lu W; Zhao T
    ACS Omega; 2022 Jul; 7(28):24688-24694. PubMed ID: 35874255
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New polyurethane/docosane microcapsules as phase-change materials for thermal energy storage.
    Felix De Castro P; Shchukin DG
    Chemistry; 2015 Jul; 21(31):11174-9. PubMed ID: 26119217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of biochar pyrolysis temperature on thermal properties of polyethylene glycol/biochar composites as shape-stable biocomposite phase change materials.
    Liu S; Peng S; Zhang B; Xue B; Yang Z; Wang S; Xu G
    RSC Adv; 2022 Mar; 12(16):9587-9598. PubMed ID: 35424955
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of different soft segments on the formation and properties of binary core microencapsulated phase change materials with polyurea/polyurethane double shell.
    Ma Y; Chu X; Tang G; Yao Y
    J Colloid Interface Sci; 2013 Feb; 392():407-414. PubMed ID: 23201062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of Microcapsules Containing Benzoyl Peroxide Initiator with Gelatin-Gum Arabic/Polyurea-Formaldehyde Shell and Evaluating Their Storage Stability.
    Raeesi M; Mirabedini SM; Farnood RR
    ACS Appl Mater Interfaces; 2017 Jun; 9(24):20818-20825. PubMed ID: 28548820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Smart Epoxy Composite Based on Phase Change Microcapsules: Preparation, Microstructure, Thermal and Dynamic Mechanical Performances.
    Hu Q; Chen Y; Hong J; Jin S; Zou G; Chen L; Chen DZ
    Molecules; 2019 Mar; 24(5):. PubMed ID: 30845646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal Storage of Nitrate Salts as Phase Change Materials (PCMs).
    Orozco MA; Acurio K; Vásquez-Aza F; Martínez-Gómez J; Chico-Proano A
    Materials (Basel); 2021 Nov; 14(23):. PubMed ID: 34885375
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing solar photothermal conversion and energy storage with titanium carbide (Ti
    Zhao K; Guo Z; Wang J; Xie H
    J Colloid Interface Sci; 2023 Nov; 650(Pt B):1591-1604. PubMed ID: 37490836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Silica encapsulation of n-octadecane via sol-gel process: a novel microencapsulated phase-change material with enhanced thermal conductivity and performance.
    Zhang H; Wang X; Wu D
    J Colloid Interface Sci; 2010 Mar; 343(1):246-55. PubMed ID: 20035943
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly Stable Energy Capsules with Nano-SiO
    Graham M; Smith J; Bilton M; Shchukina E; Novikov AA; Vinokurov V; Shchukin DG
    ACS Nano; 2020 Jul; 14(7):8894-8901. PubMed ID: 32539347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microencapsulation of n-tetradecane with poly (methyl methacrylate-co-methacrylic acid) shell by seeded emulsion polymerisation and its thermal energy storage characteristics.
    Mahajan UR; Emmanuel I; Shrinivasa Rao A; Mhaske ST
    J Microencapsul; 2023 Mar; 40(2):98-105. PubMed ID: 36734679
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic Encapsulation of Phase-Change Materials for High Thermal Performance.
    Han X; Kong T; Zhu P; Wang L
    Langmuir; 2020 Jul; 36(28):8165-8173. PubMed ID: 32575990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.