These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

370 related articles for article (PubMed ID: 31527466)

  • 41. pH-controlled synthesis of sustainable lauric acid/SiO
    Ishak S; Mandal S; Lee HS; Singh JK
    Sci Rep; 2021 Jul; 11(1):15012. PubMed ID: 34294858
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Study of Melamine-Formaldehyde/Phase Change Material Microcapsules for the Preparation of Polymer Films by Extrusion.
    García-Viñuales S; Rubio C; Martínez-Izquierdo L; Zornoza B; Piera E; Caballero MÁ; Téllez C
    Membranes (Basel); 2022 Feb; 12(3):. PubMed ID: 35323742
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Evaluation of carbonized waste tire for development of novel shape stabilized composite phase change material for thermal energy storage.
    Sarı A; Saleh TA; Hekimoğlu G; Tuzen M; Tyagi VV
    Waste Manag; 2020 Feb; 103():352-360. PubMed ID: 31923842
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Natural Microtubule-Encapsulated Phase-Change Material with Simultaneously High Latent Heat Capacity and Enhanced Thermal Conductivity.
    Song S; Zhao T; Zhu W; Qiu F; Wang Y; Dong L
    ACS Appl Mater Interfaces; 2019 Jun; 11(23):20828-20837. PubMed ID: 31117448
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Form-Stable Phase Change Materials Based on Eutectic Mixture of Tetradecanol and Fatty Acids for Building Energy Storage: Preparation and Performance Analysis.
    Huang J; Lu S; Kong X; Liu S; Li Y
    Materials (Basel); 2013 Oct; 6(10):4758-4775. PubMed ID: 28788358
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Preparation and characterization of myristic acid/expanded graphite composite phase change materials for thermal energy storage.
    Zhou D; Yuan J; Zhou Y; Liu Y
    Sci Rep; 2020 Jul; 10(1):10889. PubMed ID: 32616796
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Influence of a Coaxial Electrospraying System on the n-Hexadecane/Polycaprolactone Phase Change Microcapsules Properties.
    Zhang S; Chen Y; Campagne C; Salaün F
    Materials (Basel); 2020 May; 13(9):. PubMed ID: 32403411
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Characterization of biocomposite using coconut oil impregnated biochar as latent heat storage insulation.
    Jeon J; Park JH; Wi S; Yang S; Ok YS; Kim S
    Chemosphere; 2019 Dec; 236():124269. PubMed ID: 31319304
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Design and Preparation of Carbon Based Composite Phase Change Material for Energy Piles.
    Yang H; Memon SA; Bao X; Cui H; Li D
    Materials (Basel); 2017 Apr; 10(4):. PubMed ID: 28772752
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Microstructure and Thermal Reliability of Microcapsules Containing Phase Change Material with Self-Assembled Graphene/Organic Nano-Hybrid Shells.
    Wang X; Guo Y; Su J; Zhang X; Han N; Wang X
    Nanomaterials (Basel); 2018 May; 8(6):. PubMed ID: 29795002
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Lego-Inspired Glass Capillary Microfluidic Device: A Technique for Bespoke Microencapsulation of Phase Change Materials.
    Parvate S; Vladisavljević GT; Leister N; Spyrou A; Bolognesi G; Baiocco D; Zhang Z; Chattopadhyay S
    ACS Appl Mater Interfaces; 2023 Apr; 15(13):17195-17210. PubMed ID: 36961881
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Chitosan composite microencapsulated comb-like polymeric phase change material via coacervation microencapsulation.
    Huo X; Li W; Wang Y; Han N; Wang J; Wang N; Zhang X
    Carbohydr Polym; 2018 Nov; 200():602-610. PubMed ID: 30177205
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Preparation of Colored Microcapsule Phase Change Materials with Colored SiO
    Ma E; Wei Z; Lian C; Zhou Y; Gan S; Xu B
    Materials (Basel); 2021 Jul; 14(14):. PubMed ID: 34300932
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The Effect of Expanded Graphite Content on the Thermal Properties of Fatty Acid Composite Materials for Thermal Energy Storage.
    Zhou D; Xiao S; Liu Y
    Molecules; 2024 Jul; 29(13):. PubMed ID: 38999104
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Thermal energy storage characteristics of micro-nanoencapsulated heneicosane and octacosane with poly(methylmethacrylate) shell.
    Sarı A; Alkan C; Biçer A
    J Microencapsul; 2016 May; 33(3):221-8. PubMed ID: 26892748
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Facile preparation of carbon microcapsules containing phase-change material with enhanced thermal properties.
    Tahan Latibari S; Mehrali M; Mehrali M; Mahlia TM; Metselaar HS
    ScientificWorldJournal; 2014; 2014():379582. PubMed ID: 25054179
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Nano-encapsulated PCM via Pickering Emulsification.
    Wang X; Zhang L; Yu YH; Jia L; Sam Mannan M; Chen Y; Cheng Z
    Sci Rep; 2015 Aug; 5():13357. PubMed ID: 26278332
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Protein-polysaccharide based microencapsulated phase change material composites for thermal energy storage.
    Singh J; Vennapusa JR; Chattopadhyay S
    Carbohydr Polym; 2020 Feb; 229():115531. PubMed ID: 31826523
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Development of Novel Phase-Change Materials Derived from Methoxy Polyethylene Glycol and Aromatic Acyl Chlorides.
    Angel-López A; Norambuena Á; Arriaza-Echanes C; Terraza CA; Tundidor-Camba A; Coll D; Ortiz PA
    Polymers (Basel); 2023 Jul; 15(14):. PubMed ID: 37514458
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Form-stable phase change composites based on nanofibrillated cellulose/polydopamine hybrid aerogels with extremely high energy storage density and improved photothermal conversion efficiency.
    Tan Y; Du X; Du Z; Wang H; Cheng X
    RSC Adv; 2021 Jan; 11(10):5712-5721. PubMed ID: 35423112
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.