These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 31527608)

  • 1. Non-Gaussian noise spectroscopy with a superconducting qubit sensor.
    Sung Y; Beaudoin F; Norris LM; Yan F; Kim DK; Qiu JY; von Lüpke U; Yoder JL; Orlando TP; Gustavsson S; Viola L; Oliver WD
    Nat Commun; 2019 Sep; 10(1):3715. PubMed ID: 31527608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Qubit Noise Spectroscopy for Non-Gaussian Dephasing Environments.
    Norris LM; Paz-Silva GA; Viola L
    Phys Rev Lett; 2016 Apr; 116(15):150503. PubMed ID: 27127947
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intrinsic and induced quantum quenches for enhancing qubit-based quantum noise spectroscopy.
    Wang YX; Clerk AA
    Nat Commun; 2021 Nov; 12(1):6528. PubMed ID: 34764276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution of 1/f Flux Noise in Superconducting Qubits with Weak Magnetic Fields.
    Rower DA; Ateshian L; Li LH; Hays M; Bluvstein D; Ding L; Kannan B; Almanakly A; Braumüller J; Kim DK; Melville A; Niedzielski BM; Schwartz ME; Yoder JL; Orlando TP; Wang JI; Gustavsson S; Grover JA; Serniak K; Comin R; Oliver WD
    Phys Rev Lett; 2023 Jun; 130(22):220602. PubMed ID: 37327421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of a Quantum System Interacting with White Non-Gaussian Baths: Poisson Noise Master Equation.
    Funo K; Ishizaki A
    Phys Rev Lett; 2024 Apr; 132(17):170402. PubMed ID: 38728715
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Environmental noise spectroscopy with qubits subjected to dynamical decoupling.
    Szańkowski P; Ramon G; Krzywda J; Kwiatkowski D; Cywiński Ł
    J Phys Condens Matter; 2017 Aug; 29(33):333001. PubMed ID: 28569239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of a qubit while simultaneously monitoring its relaxation and dephasing.
    Ficheux Q; Jezouin S; Leghtas Z; Huard B
    Nat Commun; 2018 May; 9(1):1926. PubMed ID: 29765040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dephasing-Insensitive Quantum Information Storage and Processing with Superconducting Qubits.
    Guo Q; Zheng SB; Wang J; Song C; Zhang P; Li K; Liu W; Deng H; Huang K; Zheng D; Zhu X; Wang H; Lu CY; Pan JW
    Phys Rev Lett; 2018 Sep; 121(13):130501. PubMed ID: 30312077
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-Markovian dynamics of single- and two-qubit systems interacting with Gaussian and non-Gaussian fluctuating transverse environments.
    Rossi MA; Paris MG
    J Chem Phys; 2016 Jan; 144(2):024113. PubMed ID: 26772560
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-electron spin qubits.
    Russ M; Burkard G
    J Phys Condens Matter; 2017 Oct; 29(39):393001. PubMed ID: 28562367
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Millisecond charge-parity fluctuations and induced decoherence in a superconducting transmon qubit.
    Ristè D; Bultink CC; Tiggelman MJ; Schouten RN; Lehnert KW; DiCarlo L
    Nat Commun; 2013; 4():1913. PubMed ID: 23715272
    [TBL] [Abstract][Full Text] [Related]  

  • 12. When can quantum decoherence be mimicked by classical noise?
    Gu B; Franco I
    J Chem Phys; 2019 Jul; 151(1):014109. PubMed ID: 31272169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rotating-frame relaxation as a noise spectrum analyser of a superconducting qubit undergoing driven evolution.
    Yan F; Gustavsson S; Bylander J; Jin X; Yoshihara F; Cory DG; Nakamura Y; Orlando TP; Oliver WD
    Nat Commun; 2013; 4():2337. PubMed ID: 23945930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Demonstration of non-Markovian process characterisation and control on a quantum processor.
    White GAL; Hill CD; Pollock FA; Hollenberg LCL; Modi K
    Nat Commun; 2020 Dec; 11(1):6301. PubMed ID: 33298929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum noise in the josephson charge qubit.
    Astafiev O; Pashkin YA; Nakamura Y; Yamamoto T; Tsai JS
    Phys Rev Lett; 2004 Dec; 93(26 Pt 1):267007. PubMed ID: 15698013
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Weak qubit measurement with a nonlinear cavity: beyond perturbation theory.
    Laflamme C; Clerk AA
    Phys Rev Lett; 2012 Sep; 109(12):123602. PubMed ID: 23005947
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metrological Characterization of Non-Gaussian Entangled States of Superconducting Qubits.
    Xu K; Zhang YR; Sun ZH; Li H; Song P; Xiang Z; Huang K; Li H; Shi YH; Chen CT; Song X; Zheng D; Nori F; Wang H; Fan H
    Phys Rev Lett; 2022 Apr; 128(15):150501. PubMed ID: 35499907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-level quantum noise spectroscopy.
    Sung Y; Vepsäläinen A; Braumüller J; Yan F; Wang JI; Kjaergaard M; Winik R; Krantz P; Bengtsson A; Melville AJ; Niedzielski BM; Schwartz ME; Kim DK; Yoder JL; Orlando TP; Gustavsson S; Oliver WD
    Nat Commun; 2021 Feb; 12(1):967. PubMed ID: 33574240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ac Stark shift and dephasing of a superconducting qubit strongly coupled to a cavity field.
    Schuster DI; Wallraff A; Blais A; Frunzio L; Huang RS; Majer J; Girvin SM; Schoelkopf RJ
    Phys Rev Lett; 2005 Apr; 94(12):123602. PubMed ID: 15903919
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superconducting-qubit readout via low-backaction electro-optic transduction.
    Delaney RD; Urmey MD; Mittal S; Brubaker BM; Kindem JM; Burns PS; Regal CA; Lehnert KW
    Nature; 2022 Jun; 606(7914):489-493. PubMed ID: 35705821
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.