These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. [Anemia with aplastic anemia, paroxysmal nocturnal hemoglobinuria and myelodysplastic syndromes]. Passweg JR Ther Umsch; 2010 May; 67(5):251-5. PubMed ID: 20509122 [TBL] [Abstract][Full Text] [Related]
24. Peripheral blood picture in primary hypocellular refractory anemia and idiopathic acquired aplastic anemia: an additional tool for differential diagnosis. Elghetany MT; Hudnall SD; Gardner FH Haematologica; 1997; 82(1):21-4. PubMed ID: 9107077 [TBL] [Abstract][Full Text] [Related]
25. Deep-learning-assisted diagnosis for knee magnetic resonance imaging: Development and retrospective validation of MRNet. Bien N; Rajpurkar P; Ball RL; Irvin J; Park A; Jones E; Bereket M; Patel BN; Yeom KW; Shpanskaya K; Halabi S; Zucker E; Fanton G; Amanatullah DF; Beaulieu CF; Riley GM; Stewart RJ; Blankenberg FG; Larson DB; Jones RH; Langlotz CP; Ng AY; Lungren MP PLoS Med; 2018 Nov; 15(11):e1002699. PubMed ID: 30481176 [TBL] [Abstract][Full Text] [Related]
26. Automated Interpretation of Blood Culture Gram Stains by Use of a Deep Convolutional Neural Network. Smith KP; Kang AD; Kirby JE J Clin Microbiol; 2018 Mar; 56(3):. PubMed ID: 29187563 [TBL] [Abstract][Full Text] [Related]
27. Comparison of immunological abnormalities of lymphocytes in bone marrow in myelodysplastic syndrome (MDS) and aplastic anemia (AA). Li X; Xu F; He Q; Wu L; Zhang Z; Chang C Intern Med; 2010; 49(14):1349-55. PubMed ID: 20647647 [TBL] [Abstract][Full Text] [Related]
28. A deep convolutional neural network for classification of red blood cells in sickle cell anemia. Xu M; Papageorgiou DP; Abidi SZ; Dao M; Zhao H; Karniadakis GE PLoS Comput Biol; 2017 Oct; 13(10):e1005746. PubMed ID: 29049291 [TBL] [Abstract][Full Text] [Related]
29. Immunophenotype of myeloid granulocytes: a pilot study for distinguishing myelodysplastic syndrome and aplastic anemia by flow cytometry. Huang M; Li J; Zhao G; Sui X; Zhao X; Xu H Int J Lab Hematol; 2010 Jun; 32(3):275-81. PubMed ID: 19968721 [TBL] [Abstract][Full Text] [Related]
30. [Comparative study on bone marrow megakaryocytes in children with thrombocytopenic purpura, aplastic anemia and myelodysplastic syndrome]. Hu T; Shi XD; Feng YL; Liu R; Li JH; Chen J; Wang TY Zhonghua Er Ke Za Zhi; 2005 Mar; 43(3):183-7. PubMed ID: 15833188 [TBL] [Abstract][Full Text] [Related]
31. [Magnetic resonance imaging of the bone marrow in patients with aplastic anemia and myelodysplastic syndrome]. Kusumoto S Rinsho Ketsueki; 1992 Apr; 33(4):423-9. PubMed ID: 1602604 [TBL] [Abstract][Full Text] [Related]
32. Automatic classification of dental artifact status for efficient image veracity checks: effects of image resolution and convolutional neural network depth. Welch ML; McIntosh C; Purdie TG; Wee L; Traverso A; Dekker A; Haibe-Kains B; Jaffray DA Phys Med Biol; 2020 Jan; 65(1):015005. PubMed ID: 31683260 [TBL] [Abstract][Full Text] [Related]
33. A new convolutional neural network predictive model for the automatic recognition of hypogranulated neutrophils in myelodysplastic syndromes. Acevedo A; Merino A; Boldú L; Molina Á; Alférez S; Rodellar J Comput Biol Med; 2021 Jul; 134():104479. PubMed ID: 34010795 [TBL] [Abstract][Full Text] [Related]
34. Deep learning assisted detection of glaucomatous optic neuropathy and potential designs for a generalizable model. Ko YC; Wey SY; Chen WT; Chang YF; Chen MJ; Chiou SH; Liu CJ; Lee CY PLoS One; 2020; 15(5):e0233079. PubMed ID: 32407355 [TBL] [Abstract][Full Text] [Related]
35. [Bone marrow findings of childhood aplastic anemia: analyses of 140 cases by central reviewers]. Hama A; Yoshimi A; Sakaguchi H; Doisaki S; Muramatsu H; Shimada A; Takahashi Y; Nozawa K; Ito M; Tsuchida M; Manabe A; Ohara A; Kojima S Rinsho Ketsueki; 2011 Aug; 52(8):653-8. PubMed ID: 21897071 [TBL] [Abstract][Full Text] [Related]
36. Reduction in multi-lineage and erythroid progenitors distinguishes myelodysplastic syndromes from non-malignant cytopenias. Vercauteren SM; Bashashati A; Wu D; Brinkman RR; Eaves C; Eaves A; Karsan A Leuk Res; 2009 Dec; 33(12):1636-42. PubMed ID: 19414193 [TBL] [Abstract][Full Text] [Related]
37. A CAD system for pulmonary nodule prediction based on deep three-dimensional convolutional neural networks and ensemble learning. Huang W; Xue Y; Wu Y PLoS One; 2019; 14(7):e0219369. PubMed ID: 31299053 [TBL] [Abstract][Full Text] [Related]
38. Wilms' tumor 1 mRNA expression: a good tool for differentiating between myelodysplastic syndrome and aplastic anemia in children? Zuo Y; Cheng Y; Zhang L; Qin Y; Luo H Hematology; 2019 Dec; 24(1):480-486. PubMed ID: 31210595 [No Abstract] [Full Text] [Related]
39. Circulating S100A8 and S100A9 protein levels in plasma of patients with acquired aplastic anemia and myelodysplastic syndromes. Giudice V; Wu Z; Kajigaya S; Fernandez Ibanez MDP; Rios O; Cheung F; Ito S; Young NS Cytokine; 2019 Jan; 113():462-465. PubMed ID: 29958797 [TBL] [Abstract][Full Text] [Related]
40. Application of serum Raman spectroscopy in rapid and early discrimination of aplastic anemia and myelodysplastic syndrome. Liang H; Kong X; Ren Y; Wang H; Liu E; Sun F; Zhu G; Zhang Q; Zhou Y Spectrochim Acta A Mol Biomol Spectrosc; 2023 Dec; 302():123008. PubMed ID: 37328404 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]