BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 31527850)

  • 1. The role of sugar-backbone heterogeneity and chimeras in the simultaneous emergence of RNA and DNA.
    Bhowmik S; Krishnamurthy R
    Nat Chem; 2019 Nov; 11(11):1009-1018. PubMed ID: 31527850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural Insights into Conformation Differences between DNA/TNA and RNA/TNA Chimeric Duplexes.
    Anosova I; Kowal EA; Sisco NJ; Sau S; Liao JY; Bala S; Rozners E; Egli M; Chaput JC; Van Horn WD
    Chembiochem; 2016 Sep; 17(18):1705-8. PubMed ID: 27347671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RNA-DNA Chimeras in the Context of an RNA World Transition to an RNA/DNA World.
    Gavette JV; Stoop M; Hud NV; Krishnamurthy R
    Angew Chem Int Ed Engl; 2016 Oct; 55(42):13204-13209. PubMed ID: 27650222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An efficient and faithful in vitro replication system for threose nucleic acid.
    Yu H; Zhang S; Dunn MR; Chaput JC
    J Am Chem Soc; 2013 Mar; 135(9):3583-91. PubMed ID: 23432469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ligase-Mediated Threose Nucleic Acid Synthesis on DNA Templates.
    McCloskey CM; Liao JY; Bala S; Chaput JC
    ACS Synth Biol; 2019 Feb; 8(2):282-286. PubMed ID: 30629885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Nucleic Acid Sequence That is Catalytically Active in Both RNA and TNA Backbones.
    Wei D; Wang Y; Song D; Zhang Z; Wang J; Chen JY; Li Z; Yu H
    ACS Synth Biol; 2022 Nov; 11(11):3874-3885. PubMed ID: 36278399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental evidence that GNA and TNA were not sequential polymers in the prebiotic evolution of RNA.
    Yang YW; Zhang S; McCullum EO; Chaput JC
    J Mol Evol; 2007 Sep; 65(3):289-95. PubMed ID: 17828568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Darwinian evolution of an alternative genetic system provides support for TNA as an RNA progenitor.
    Yu H; Zhang S; Chaput JC
    Nat Chem; 2012 Jan; 4(3):183-7. PubMed ID: 22354431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chimeric XNA: An Unconventional Design for Orthogonal Informational Systems.
    Efthymiou T; Gavette J; Stoop M; De Riccardis F; Froeyen M; Herdewijn P; Krishnamurthy R
    Chemistry; 2018 Sep; 24(49):12811-12819. PubMed ID: 29901248
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An In Vitro Selection Protocol for Threose Nucleic Acid (TNA) Using DNA Display.
    Dunn MR; Chaput JC
    Curr Protoc Nucleic Acid Chem; 2014 Jun; 57():9.8.1-19. PubMed ID: 24961723
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonenzymatic synthesis of RNA and DNA oligomers on hexitol nucleic acid templates: the importance of the A structure.
    Kozlov IA; Politis PK; Van Aerschot A; Busson R; Herdewijn P; Orgel LE
    J Am Chem Soc; 1999 Mar; 121(12):2653-6. PubMed ID: 11543583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystallographic analysis of engineered polymerases synthesizing phosphonomethylthreosyl nucleic acid.
    Hajjar M; Chim N; Liu C; Herdewijn P; Chaput JC
    Nucleic Acids Res; 2022 Sep; 50(17):9663-9674. PubMed ID: 36124684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 2,6-diaminopurine in TNA: effect on duplex stabilities and on the efficiency of template-controlled ligations.
    Wu X; Delgado G; Krishnamurthy R; Eschenmoser A
    Org Lett; 2002 Apr; 4(8):1283-6. PubMed ID: 11950343
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A viscous solvent enables information transfer from gene-length nucleic acids in a model prebiotic replication cycle.
    He C; Gállego I; Laughlin B; Grover MA; Hud NV
    Nat Chem; 2017 Apr; 9(4):318-324. PubMed ID: 28338690
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selecting Fully-Modified XNA Aptamers Using Synthetic Genetics.
    Taylor AI; Holliger P
    Curr Protoc Chem Biol; 2018 Jun; 10(2):e44. PubMed ID: 29927117
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid DNA chemical ligation for amplification of RNA and DNA signal.
    Abe H; Kondo Y; Jinmei H; Abe N; Furukawa K; Uchiyama A; Tsuneda S; Aikawa K; Matsumoto I; Ito Y
    Bioconjug Chem; 2008 Jan; 19(1):327-33. PubMed ID: 17990846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Emergence of RNA from the Heterogeneous Products of Prebiotic Nucleotide Synthesis.
    Kim SC; O'Flaherty DK; Giurgiu C; Zhou L; Szostak JW
    J Am Chem Soc; 2021 Mar; 143(9):3267-3279. PubMed ID: 33636080
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of oligonucleotide-PNA-chimeras by template-directed ligation.
    Koppitz M; Nielsen PE; Orgel LE
    J Am Chem Soc; 1998; 120(19):4563-9. PubMed ID: 11541746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonenzymatic template-directed reactions on altritol oligomers, preorganized analogues of oligonucleotides.
    Kozlov IA; Zielinski M; Allart B; Kerremans L; Van Aerschot A; Busson R; Herdewijn P; Orgel LE
    Chemistry; 2000 Jan; 6(1):151-5. PubMed ID: 10747399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical etiology of nucleic acid structure: the pentulofuranosyl oligonucleotide systems: the (1'→3')-β-L-ribulo, (4'→3')-α-L-xylulo, and (1'→3')-α-L-xylulo nucleic acids.
    Stoop M; Meher G; Karri P; Krishnamurthy R
    Chemistry; 2013 Nov; 19(45):15336-45. PubMed ID: 24150882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.