BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 31528132)

  • 21. [Selection of statistical methods for estimating the association between exposure factors and rare outcomes based on cohort studies].
    Liu XH; Wang C; Yan RH; Peng XX; Yin CH
    Zhonghua Liu Xing Bing Xue Za Zhi; 2023 Jul; 44(7):1126-1132. PubMed ID: 37482717
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Potential misinterpretation of treatment effects due to use of odds ratios and logistic regression in randomized controlled trials.
    Knol MJ; Duijnhoven RG; Grobbee DE; Moons KG; Groenwold RH
    PLoS One; 2011; 6(6):e21248. PubMed ID: 21698176
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparing performance between log-binomial and robust Poisson regression models for estimating risk ratios under model misspecification.
    Chen W; Qian L; Shi J; Franklin M
    BMC Med Res Methodol; 2018 Jun; 18(1):63. PubMed ID: 29929477
    [TBL] [Abstract][Full Text] [Related]  

  • 24. What's the Risk? A simple approach for estimating adjusted risk measures from nonlinear models including logistic regression.
    Kleinman LC; Norton EC
    Health Serv Res; 2009 Feb; 44(1):288-302. PubMed ID: 18793213
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Methods for estimating prevalence ratios in cross-sectional studies.
    Coutinho LM; Scazufca M; Menezes PR
    Rev Saude Publica; 2008 Dec; 42(6):992-8. PubMed ID: 19009156
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Random effects meta-analysis of event outcome in the framework of the generalized linear mixed model with applications in sparse data.
    Stijnen T; Hamza TH; Ozdemir P
    Stat Med; 2010 Dec; 29(29):3046-67. PubMed ID: 20827667
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Extension of the modified Poisson regression model to prospective studies with correlated binary data.
    Zou GY; Donner A
    Stat Methods Med Res; 2013 Dec; 22(6):661-70. PubMed ID: 22072596
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Technical note: The risk ratio, an alternative to the odds ratio for estimating the association between multiple risk factors and a dichotomous outcome.
    Ospina PA; Nydam DV; DiCiccio TJ
    J Dairy Sci; 2012 May; 95(5):2576-84. PubMed ID: 22541486
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Upper Limits of Risk Ratios and Recommendations for Reporting Risk Ratios, Odds Ratios, and Rate Ratios.
    Chao YS; Wu CJ; Po JY; Huang SY; Wu HC; Hsu HT; Cheng YP; Lai YC; Chen WC
    Cureus; 2023 Apr; 15(4):e37799. PubMed ID: 37214026
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A practical guide for multivariate analysis of dichotomous outcomes.
    Lee J; Tan CS; Chia KS
    Ann Acad Med Singap; 2009 Aug; 38(8):714-9. PubMed ID: 19736577
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Exploring factors associated with traumatic dental injuries in preschool children: a Poisson regression analysis.
    Feldens CA; Kramer PF; Ferreira SH; Spiguel MH; Marquezan M
    Dent Traumatol; 2010 Apr; 26(2):143-8. PubMed ID: 20070348
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Odds Ratio or Prevalence Ratio? An Overview of Reported Statistical Methods and Appropriateness of Interpretations in Cross-sectional Studies with Dichotomous Outcomes in Veterinary Medicine.
    Martinez BAF; Leotti VB; Silva GSE; Nunes LN; Machado G; Corbellini LG
    Front Vet Sci; 2017; 4():193. PubMed ID: 29177157
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Noncollapsibility and its role in quantifying confounding bias in logistic regression.
    Schuster NA; Twisk JWR; Ter Riet G; Heymans MW; Rijnhart JJM
    BMC Med Res Methodol; 2021 Jul; 21(1):136. PubMed ID: 34225653
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Simulation and identification of foodborne outbreaks in a large supermarket consumer purchase dataset.
    Dougherty PE; Møller FT; Ethelberg S; Rø GØI; Jore S
    Sci Rep; 2022 Jul; 12(1):11491. PubMed ID: 35798785
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Part 1. Statistical Learning Methods for the Effects of Multiple Air Pollution Constituents.
    Coull BA; Bobb JF; Wellenius GA; Kioumourtzoglou MA; Mittleman MA; Koutrakis P; Godleski JJ
    Res Rep Health Eff Inst; 2015 Jun; (183 Pt 1-2):5-50. PubMed ID: 26333238
    [TBL] [Abstract][Full Text] [Related]  

  • 36. All-source and source-specific air pollution and 10-year diabetes Incidence: Total effect and mediation analyses in the Heinz Nixdorf recall study.
    Lucht S; Hennig F; Moebus S; Ohlwein S; Herder C; Kowall B; Jöckel KH; Hoffmann B
    Environ Int; 2020 Mar; 136():105493. PubMed ID: 31991234
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A simple method for estimating relative risk using logistic regression.
    Diaz-Quijano FA
    BMC Med Res Methodol; 2012 Feb; 12():14. PubMed ID: 22335836
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Meta-analysis of the Italian studies on short-term effects of air pollution].
    Biggeri A; Bellini P; Terracini B;
    Epidemiol Prev; 2001; 25(2 Suppl):1-71. PubMed ID: 11515188
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of robustness to outliers between robust poisson models and log-binomial models when estimating relative risks for common binary outcomes: a simulation study.
    Chen W; Shi J; Qian L; Azen SP
    BMC Med Res Methodol; 2014 Jun; 14():82. PubMed ID: 24965498
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.